Смекни!
smekni.com

по философии и методологии науки тема №167 (стр. 1 из 3)

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

КАФЕДРА ФИЛОСОФИИ И МЕТОДОЛОГИИ НАУКИ

РЕФЕРАТ ПО ФИЛОСОФИИ И МЕТОДОЛОГИИ НАУКИ

ТЕМА № 167

«ОСНОВНЫЕ НАПРАВЛЕНИЯ МАТЕМАТИЗАЦИИ СОВРЕМЕННОЙ НАУКИ»

Магистрант

Сыричев

Вадим

Викторович

Кафедра Теории функций

Минск 2009

Содержание

Введение 3

1. Краткий очерк истории математизации науки 4

2. Основные методы математизации 6

3. Математика и другие науки 9

4. Пределы и проблемы математизации 12

Заключение 14

Список литературы 16

Введение

Современный этап развития науки характеризуется усилением и углублением взаимодействия отдельных её отраслей, формированием новых форм и средств исследования, в том числе математизацией и компьютеризацией познавательного процесса. Распространение понятий и принципов математики в различные сферы научного познания оказывает существенное влияние как на эффективность специальных исследований, так и на развитие самой математики.

В процессе познания действительности математика играет все более возрастающую роль. Сегодня нет такой области знаний, где в той или иной степени не использовались бы математические понятия и методы. Проблемы, решение которых раньше считалось невозможным, успешно решаются благодаря применению математики, тем самым расширяются возможности научного познания. Современная математика объединяет весьма различные области знания в единую систему.

Отличительной особенностью математического знания является то, что математики не изучают непосредственно действительность, они изучают ее с помощью абстрактных объектов, которые являются идеальными моделями, образами реальных предметов и явлений. Более того, многие абстрактные объекты возникают в математике, не имея своего реального прообраза; иногда, уже после того, как объект возник и изучен в математике, находится реальный предмет, который может быть его прообразом.

Изучение математиками абстрактных объектов приводит к тому, что два, казалось бы, совершенно разных явления, можно описать одинаковыми математическими моделями. Возникая в одной практической задаче, абстрактный математический объект живет своей жизнью, изучается, приходит время и он становится нужен в совершенно другой своей области.

Актуальность темы данной работы связана с развитием и проникновением математических методов в различные области человеческой деятельности, которое со временем только расширяется и углубляется.

Краткий очерк истории математизации науки

Приведем классическое определение, данное А. Н. Колмогоровым: Математика – наука о количественных отношениях и пространственных формах действительного мира. Однако предмет изучения математики настолько огромен и разнообразен, что данное определение является довольно скудным.

Развитие математики началось вместе с тем, как человек стал использовать абстракции сколько-нибудь высокого уровня. Простая абстракция — числа; осмысление того, что два яблока и два апельсина, несмотря на все их различия, имеют что-то общее, а именно занимают обе руки одного человека, — качественное достижение мышления человека. Кроме того, что древние люди узнали, как считать конкретные объекты, они также поняли, как вычислять и абстрактные количества, такие, как время: дни, сезоны, годы. Из элементарного счёта естественным образом начала развиваться арифметика: сложение, вычитание, умножение и деление чисел. Следует также отметить, что почти с самого зарождения математики, она была неразрывно связана с практической деятельностью человека.

С появлением первых государств возникает потребности в развитии и углублении математических знаний. Развитие земледелия, архитектуры дает толчок к возникновению геометрии. Математические знания еще являлись только эмпирическими фактами, о необходимости их доказательства речи не возникало. Многие формулы представлялись в виде неких рецептов, следуя которым можно получить результат. Доказательством выступала практика и опыт: если какой-либо факт подтверждался практически, хотя бы приближенно, но достаточно точно для практических нужд, он считался верным. Поэтому некоторые факты, открытые египтянами, оказались правильными лишь приближенно. Например, они считали, что отношение длины окружности к диаметру равно 3,16.

Последующий период, вплоть до XVI века характеризуется довольно медленным процессом проникновения математики в другие науки. Решаются задачи, вызванные торговой деятельностью, как в Западной Европе, астрономией и мореплаванием (тригонометрия), как на Арабском Востоке и в Индии.

Бурное развитие как самой математики, так и ее приложений наблюдается в Новое время. Переход к новым капиталистическим отношениям, ослабление влияния церкви на философию и науку развязывают исследователям руки, делают их мысли смелее. К этому времени можно отнести деятельность таких ученых как Г.Галилей, И.Кеплер, Т.Браге, Р.Декарт, Б. Паскаль, П. Ферма, И.Ньютон, Г.Лейбниц.

XVIII век характеризуется окончательной математизацией физики. Крупнейшие математики того времени: Л.Эйлер, Ж.-Л.Лагранж, П.С. Лаплас развивают анализ бесконечно-малых, делая его основным орудием исследования в естествознании.

XIX век ознаменовался революциями в точных науках. Идеи, родившиеся в абстрактных недрах математики, такие как понятие группы, неевклидовая геометрия нашли и до сих пор находят применение в физике, кристаллографии, химии. Особое место на этом этапе развития науки следует уделить Г.Кантору и его теории множеств, которая на начальном этапе являлась очень противоречивой, что грозило фундаменту всей математики. К счастью в начале XX века удалось придумать аксиоматизацию теорию множеств, свободную (на сегодняшний день) от противоречий.

Развитие математики и ее приложений в XX веке было настолько бурным, что его трудно описать достаточно подробно. Выделим лишь некоторые основные моменты. Физические приложения продолжали развиваться, не ограничиваясь уже одним дифференциальным и интегральным исчислениями: в ядерной физике, например, начали широко использовать многомерную геометрию и теорию групп; в теории относительности замечательные применения нашла неевклидова геометрия. Теория вероятностей возможно даже обогнала математический анализ по числу приложений: методы математической статистики используют в огромном числе наук, начиная с физики и заканчивая психологией и лингвистикой. Развитие математической логики, вызванное программой Гильберта обоснования математики, привело к появлению компьютеров, которые изменили мировоззрение современного человека.

Практика ставит новые задачи, которые уже не решаются испытанными в физике методами анализа непрерывных функций. Эти дискретные задачи из экономики, генетики, криптографии и др. характеризуются трудоемким перебором огромного числа вариантов, который не под силу даже компьютерам.

Основные методы математизации

Выделим основные методы математизации: математическое моделирование, формализация и аксиоматизация. Подробнее рассмотрим каждый из них.

Математическое моделирование – важнейший метод. Математическая модель — это приближенное описание какого-либо класса явлений или объектов реального мира на языке математики. Основная цель моделирования — исследовать эти объекты и предсказать результаты будущих наблюдений. Однако моделирование — это еще и метод познания окружающего мира, дающий возможность управлять им.

Он состоит в том, что исследователь строит математическую модель рассматриваемой области, то есть выделяет существенные для него свойства и количественные характеристики явления, выделяет существенные отношения между ними и пытается найти какой-либо похожий объект в математике.

Моделирование – некоторое упрощение, отбрасывание лишней, не нужной информации. Выделяются только важные для нас свойства конкретного объекта. Конечно в итоге, мы получаем несколько упрощенную картину явления. Важнейшим моментом является то, чтобы при упрощении не упустить нужные нам черты, не огрубить модель настолько, чтобы она перестала достаточно хорошо для нас описывать явление. С другой стороны, модель не должна получиться очень сложной, не поддающейся математическому анализу.

Математическое моделирование незаменимо в тех случаях, когда натурный эксперимент невозможен или затруднен по тем или иным причинам. Например, нельзя поставить натурный эксперимент в истории, чтобы проверить, «что было бы, если бы...». Невозможно проверить правильность той или иной космологической теории. В принципе возможно, но вряд ли разумно, поставить эксперимент по распространению какой-либо болезни, например чумы, или осуществить ядерный взрыв, чтобы изучить его последствия. Однако все это вполне можно сделать на компьютере, построив предварительно математические модели изучаемых явлений.

Выделим основные этапы математического моделирования:

1) Построение модели. На этом этапе задается некоторый «нематематический» объект — явление природы, конструкция, экономический план, производственный процесс и так далее. При этом, как правило, четкое описание ситуации затруднено. Сначала выявляются основные особенности явления и связи между ними на качественном уровне. Затем найденные качественные зависимости формулируются на языке математики, то есть строится математическая модель. Это самая трудная стадия моделирования.

2) Решение математической задачи, к которой приводит модель. На этом этапе большое внимание уделяется разработке алгоритмов и численных методов решения задачи на ЭВМ, при помощи которых результат может быть найден с необходимой точностью и за допустимое время.

3) Интерпретация полученных следствий из математической модели. Следствия, выведенные из модели на языке математики, интерпретируются на языке, принятом в данной области.