Смекни!
smekni.com

Работа По теме: «Целочисленное программирование» (стр. 5 из 6)

Ш а г 0. Начать с двойственно допустимой матрицы А° в урав­нении (2), элементы которой — целые числа (как будет видно из дальнейшего, матрица А° может содержать и нецелые элементы).

Шаг 1. Среди строк с аi0 < 0 (i = 1, . . ., n+m) выбрать строку с наименьшим значением i; эта строка станет производя­щей. (Если аi0≥ 0 (i= 1, . . ., n + m), то задача решена.)

Ш а г 2. Выбрать λ > 0 (правило выбора будет описано даль­ше) и написать внизу таблицы дополнительную строку

Эта строка выбирается в качестве ведущей.

Ш а г 3. Провести шаг двойственного симплекс-метода, вычерк­нуть дополнительную строку и вернуться к шагу 1.

Доказательство конечности. Доказательство конечности про­водится в предположении, что существует нижняя граница целевой функции x0. Использование двойственного метода гарантирует выполнение условия

Если a00 уменьшается, то уменьшается на целое число, поскольку все числа остаются целыми, и, следовательно, через конечное число шагов a00 станет меньше x0. Если алгоритм бесконечен, то a00 должно оставаться Неизменным для всех t > to. Рассмотрим тогда компоненту a10, столбца α0. Если a10 уменьшается, то на целое число. Когда a10 становится отрицательным, первая строка должна быть выбрана в качестве производящей. Если а1j< О для всех j, то задача неразрешима.

Теперь опишем правило выбора λ в шаге 2 полностью цело­численного алгоритма. Пусть производящая строка имеет вид

и дополнительная строка

Для любого аj<0 всегда можно выбрать λ достаточно большим, чтобы [aj/λ]|==—1. Согласно лексикографическому двойственному симплекс-методу, ведущий столбец αs выбирается по правилу

Поскольку [as/λ]=-1 и [aj/λ] – отрицательные числа, т.е. -1, -2,…….., -μj, имеем

(11)

Таким образом, αs должен быть лексикографически минималь­ным столбцом. Последнее означает, что среди всевозможных столбцов (с avj < 0) ведущий столбец должен быть лексикографи­чески минимальным вне зависимости от того, какое значение λ выбирается.

Теперь рассмотрим два значения К, при каждом из которых выполняется условие [as1]=—l и [as2]=—l. Столбец α0 изменяется следующим образом:

Следовательно, чем меньше λ, тем сильнее лексикографически уменьшится нулевой столбец. Значение λ следует выбирать так, чтобы, во-первых, ведущий элемент стал равным —1 и, во-вторых, чтобы λ давало максимальное уменьшение столбцу α0. Правило формулируется следующим образом.

Шаг 0. Пусть строка с номером v является производящей.

Шаг 1. Пусть αs, — лексикографически минимальный стол­бец среди столбцов с αvj< 0.

Шаг 2. Для каждого с αvj< 0 , пусть μi—наибольшее целое, такое ,что αsjj

Шаг 3. Пусть [μj=-avjj]. Тогда

Шаг 4. Положить λ = max λj для аvj < 0.

Правило выбора λ, описанное выше, позволяет сделать веду­щий элемент равным —1, при этом будет сохраняться двойствен­ная допустимость таблицы и в то же время нулевой столбец будет максимально лексикографически уменьшаться. Следует заметить, что отсечение Гомори не является самым «сильным» возможным неравенством. Оно также может быть «сильнее» или «слабее» самого производящего неравенства. Например, пусть производя­щей строкой будет

X= -4-3 (-x1) – 5 (-x2) (12)

Если использовать λ=2, то получим отсечение

S= -2-2 (-x1) – 3 (-x2)≥0 (13)

Для λ=3 имеем

S= -2-1 (-x1) – 2 (-x2)≥0 (14)

Для λ=4

S=-1-1 (-x1)-2 (-x2)≥0 (15)

Как видно, неравенство (14) сильнее, чем (12), (12) сильнее, чем (13), а (13) сильнее, чем (15).

Другое замечание касается того, что если величина λ, полу­чаемая указанным выше способом, может быть увеличена так, чтобы [a0/λ] и [aj/λ] (аj > 0) оставались без изменения, то отсече­ние Гомори можно усилить, несмотря на то, что нулевой столбец -уменьшится на ту же величину.

Выпишем производящую строку

Чем больше величина λ, тем меньше абсолютная величина коэффи­циентов отсечения. Естественно, что мы хотели бы иметь абсо­лютную величину [a0/λ] большой, а абсолютные величины [aj/λ] — малыми. Если значение λ (полученное по приведенному выше правилу) может быть увеличено так, чтобы значения [aj/λ [] и [a0/λ] не изменялись, то используется большее значение для λ. Тем самым по возможности уменьшится абсолютная величина [aj/λ] для некоторых j, и отсечение станет сильнее.

Например, пусть целевая функция имеет вид

X0= - 20 – x1- 2x2 – 3x2 – x4 ,

И производящая строка

X= -20+ (-7) (-x1)+ (-8) (-x2)+ (-15) (-x3)+18 (-x4).

Используя описанную выше процедуру выбора λ, получим λ = 7. Соответствующее отсечение

s = -3 + x1 + 2x2 + Зx3 — 2x4≥ 0.

Если использовать λ = 9 вместо λ = 7, получим отсечение

s* = -3 + x1 + x2 + 2x3 — 2x4 ≥ О,

являющееся более сильным .

Интересная особенность полностью целочисленного алгоритма состоит в том, что для его использования не обязательно требовать целочисленности всех аij. Пусть задача целочисленного програм­мирования имеет вид

максимизировать

при условиях

xn+i= ai0 - ∑aijxj ≥0 (i=1,………,m)

xj≥0 (j=1,…….,n)

где a 00 и cj — целые, аi0 о и аij могут быть произвольными действи­тельными числами. Таблица 14.1 содержит в первых n + 1 строках только целые числа.

Выпишем произвольную производящую строку (опуская обо­значение строки)

Вне зависимости от того, являются ли a0 и aj целыми ли действительными, коэффициенты отсечения сегда целые, а ведущий элемент равен —1. В результате итера­ции с таким ведущим элементом первые n+1 строк таблицы останутся целочисленными. Заметим, что переменная s — неотри­цательная целая. В силу приведенных рассуждений доказатель­ство конечности в данном случае мало чем отличается от описан­ного выше. Когда в нулевом столбце ai0 == 1, . . ., n)становятся неотрицательными целыми, а остальные элементы нулевого столб­ца — неотрицательными, то получается оптимальное решение.

В последних главах были обсуждены два алгоритма целочис­ленного программирования, первый из которых называется цик­лическим алгоритмом (λ = 1), а второй — полностью целочис­ленным (λ > 1).

Задача о рюкзаке

Контейнер оборудован m отсеками вместимостью

для перевозки n видов продукции
. Виды продукции характеризуются свойством неделимости, т.е. их можно брать в количестве 0, 1, 2, ... единиц. Пусть
- расход i-го отсека для перевозки единицы j-ой продукции. Обозначим через
полезность единицы j-ой продукции. Требуется найти план
перевозки, при котором максимизируется общая полезность рейса.

Модель задачи примет вид:

при ограничениях на вместимости отсеков

условии неотрицательности

условии целочисленности

- целые
.

Когда для перевозки имеется один отсек и каждый вид продукции может быть взят или нет, то модель задачи принимает вид:

.