Смекни!
smekni.com

«Уравнения с двумя неизвестными в целых числах» (стр. 2 из 3)

1.3 Способы решения уравнений

При решении уравнений в целых и натуральных числах можно условно выделить следующие методы:

1. Способ перебора вариантов.

2. Алгоритм Евклида.

3. Цепные дроби.

4. Метод разложения на множители.

5. Решение уравнений в целых числах как квадратных относительно какой-либо переменной.

6. Метод остатков.

7. Метод бесконечного спуска.

Глава 2. Применение способов решения уравнений

1. Примеры решения уравнений.

2.1 Алгоритм Евклида.

Задача 1. Решить уравнение в целых числах 407х – 2816y = 33.

Воспользуемся составленным алгоритмом.

1. Используя алгоритм Евклида, найдем наибольший общий делитель чисел 407 и 2816:

2816 = 407·6 + 374;

407 = 374·1 + 33;

374 = 33·11 + 11;

33 = 11·3

Следовательно (407,2816) = 11, причем 33 делится на 11

2. Разделим обе части первоначального уравнения на 11, получим уравнение 37х – 256y = 3, причем (37, 256) = 1

3. С помощью алгоритма Евклида найдем линейное представление числа 1 через числа 37 и 256.

256 = 37·6 + 34;

37 = 34·1 + 3;

34 = 3·11 + 1

Выразим 1 из последнего равенства, затем последовательно поднимаясь по равенствам будем выражать 3; 34 и полученные выражения подставим в выражение для 1.

1 = 34 – 3·11 = 34 – (37 – 34·1) ·11 = 34·12 – 37·11 = (256 – 37·6) ·12 – 37·11 =

– 83·37 – 256·(–12)

Таким образом, 37·(– 83) – 256·(–12) = 1, следовательно пара чисел х0 = – 83 и у0 = – 12 есть решение уравнения 37х – 256y = 3.

4. Запишем общую формулу решений первоначального уравнения

где t - любое целое число.

2.2 Способ перебора вариантов.

Задача 2. В клетке сидят кролики и фазаны, всего у них 18 ног. Узнать, сколько в клетке тех и других?

Решение: Составляется уравнение с двумя неизвестными переменными, в котором х – число кроликов , у – число фазанов:

4х + 2у = 18, или 2х + у = 9.

Выразим у через х : у = 9 – 2х.

Далее воспользуемся методом перебора:

х 1 2 3 4
у 7 5 3 1

Таким образом, задача имеет четыре решения.

Ответ: (1; 7), (2; 5), (3; 3), (4; 1).

2.3 Метод разложения на множители.

Перебор вариантов при нахождении натуральных решений уравнения с двумя переменными оказывается весьма трудоемким. Кроме того, если уравнение имеет целые решения, то перебрать их невозможно, так как таких решений бесконечное множество. Поэтому покажем еще один прием - метод разложения на множители.

Задача 3. Решить уравнение в целых числах y3 - x3 = 91.

Решение. 1) Используя формулы сокращенного умножения, разложим правую часть уравнения на множители:

(y - x)(y2 + xy + x2) = 91……………………….(1)

2) Выпишем все делители числа 91: ± 1; ± 7; ± 13; ± 91

3) Проводим исследование. Заметим, что для любых целых x и y число

y2 + yx + x2y2 - 2|y||x| + x2 = (|y| - |x|)2 ≥ 0,

следовательно, оба сомножителя в левой части уравнения должны быть положительными. Тогда уравнение (1) равносильно совокупности систем уравнений:

;
;
;

4) Решив системы, получим: первая система имеет решения (5; 6), (-6; -5); третья (-3; 4),(-4;3); вторая и четвертая решений в целых числах не имеют.

Ответ: уравнение (1) имеет четыре решения (5; 6); (-6; -5); (-3; 4); (-4;3).

Задача 4. Найти все пары натуральных чисел, удовлетворяющих уравнению

.

Решение. Разложим левую часть уравнения на множители и запишем уравнение в виде

.

Т.к. делителями числа 69 являются числа 1, 3, 23 и 69, то 69 можно получить двумя способами: 69=1·69 и 69=3·23. Учитывая, что

, получим две системы уравнений, решив которые мы сможем найти искомые числа:

или
.

Первая система имеет решение

, а вторая система имеет решение
.

Ответ:

.

Задача 5. Решить уравнение в целых числах:

.

Решение. Запишем уравнение в виде

.

Разложим левую часть уравнения на множители. Получим

.

Произведение двух целых чисел может равняться 1 только в двух случаях: если оба они равны 1 или -1. Получим две системы:

или
.

Первая система имеет решение х=2, у=2, а вторая система имеет решение х=0, у=0.

Ответ:

.

Задача 6. Решить в целых числах уравнение

.

Решение. Запишем данное уравнение в виде

.

Разложим левую часть уравнения на множители способом группировки, получим

.

Произведение двух целых чисел может равняться 7 в следующих случаях:

7=1· 7=7·1=-1·(-7)=-7·(-1).Таким образом, получим четыре системы:

или
, или
, или
.

Решением первой системы является пара чисел х = - 5, у = - 6. Решая вторую систему, получим х = 13, у = 6.Для третьей системы решением являются числа х = 5, у = 6. Четвёртая система имеет решение х = - 13, у = - 6.

Ответ:

.

Задача 7. Доказать, что уравнение (x - y)3 + (y - z)3 + (z - x)3 = 30 не

имеет решений в целых числах.

Решение. 1) Разложим левую часть уравнения на множители и обе части уравнения разделим на 3, в результате получим уравнение:

( x - y)(y - z)(z - x) = 10…………………………(2)

2) Делителями 10 являются числа ±1, ±2, ±5, ±10. Заметим также, что сумма сомножителей левой части уравнения (2) равна 0. Нетрудно проверить, что сумма любых трех чисел из множества делителей числа 10, дающих в произведении 10, не будет равняться 0. Следовательно, исходное уравнение не имеет решений в целых числах.

Задача 8. Решить уравнение: х2 - у2 =3 в целых числах.

Решение:

1. применим формулу сокращенного умножения х2 - у2=(х-у)(х+у)=3

2.

найдем делители числа 3 = -1;-3;1;3

3.

Данное уравнение равносильно совокупности 4 систем:

х-у=1 2х=4 х=2, у=1

х+у=3

х-у=3 х=2, у=-1

х+у=1

х-у=-3 х=-2, у=1

х+у=-1

х-у=-1 х=-2, у=-1

х+у=-3

Ответ: (2;1), (2;-1), (-2;1), (-2,-1)

2.4 Метод остатков.

Задача 9. Решить уравнение: х2+ху=10

Решение:

1. Выразим переменную у через х: у= 10-х2

Х

У =

- х

2.

Дробь
будет целой, если х Є ±1;±2; ±5;±10