Наиболее естественное применение метода математической индукции в
геометрии,
Пример 5
Доказать, что число диагоналей выпуклого n-угольника равно n(n-3)/2.
Решение:
1) При n=3 утверждение справедливо, ибо в треугольнике
А 3 =3(3-3)/2=0 диагоналей;
А 2 А(3) истинно.
2) Предположим, что во всяком
выпуклом k-угольнике имеет ся А k =k(k-3)/2 диагоналей.
3)Докажем, что тогда в выпуклом
А k+1 (k+1)-угольнике число
диагоналей А k+1 =(k+1)(k-2)/2.
Пусть А 1 А 2 А 3 …A k A k+1 -выпуклый (k+1)-угольник. Проведём в нём диагональ A 1 A k . Чтобы под-считать общее число диагоналей этого (k+1)-угольника нужно подсчитать число диагоналей в k-угольнике A 1 A 2 …A k , прибавить к полученному числу k-2, т.е. число диагоналей (k+1)-угольника, исходящих из вершины А k+1 , и, кроме того, следует учесть диагональ А 1 А k . Таким образом,
k+1=k+(k-2)+1=k(k-3)/2+k-1=(k+1)(k-2)/2.
Итак, А(k) > A(k+1). Вследствие принципа математической индукции утверждение верно для любого выпуклого n-угольника.
-10-
Заключение
В частности изучив метод математической индукции, я повысила свои знания в этой области математики, а также научилась решать задачи, которые раньше были мне не под силу.
В основном это были логические и занимательные задачи, т.е. как раз те, которые повышают интерес к самой математике как к науке. Решение таких задач становится занимательным занятием и может привлечь в математические лабиринты всё новых любознательных. По-моему, это является основой любой науки.
Продолжая изучать метод математической индукции, я постараюсь научиться применять его не только в математике, но и в решении проблем физики, химии и самой жизни.
-11-
Список используемой литературы:
1. Болтянский В.Г., Сидоров Ю.В., Шабунин М.И. Математика .
Лекции ,задачи, решения /Учебное пособие –ООО « Попурри» -1996.
2. Зорин В.В. , Фискович Т.Т. Пособие по математике для поступающих в ВУЗы /
Москва : Высшая школа – 1980.
3. Рубанов И.С. Как обучать методу математической индукции /
Математика в школе - № 1. - 1996 .
-12-