Более подробно рассмотрим подготовку к плаванию в стесненных водах. К навигационным особенностям такого плавания можно отнести следующее:
плавание происходит в непосредственной близости от навигационных опасностей;
ширина фарватера находится в предельном соотношении с шириной полосы, очерчиваемой судном;
изменяется направление фарватера;
наблюдаются резкие перепады глубин на фарватере и около него а также значительные приливные колебания уровня моря и приливно-отливные течения, направления и скорости которых не всегда точно известны;
плавание происходит на пониженных скоростях когда силы и моменты внешних воздействий на судно соизмеримы с силами и моментами управляющих воздействий, что грозит ухудшением или полной потерей управляемости;
В связи с эти используются карты масштаба 1:50 000 и крупнее, которые позволяют учитывать маневренные и инерционно-тормозные характеристики судна и обеспечивать необходимую точность определения и счисления места судна, непрерывно контролируется место судна для своевременного обнаружения отклонения от намеченного маршрута движения, обеспечивается специальная повышенная надежность работы машины, судовых устройств и систем за счет дополнительного вахтенного обслуживания, введения в действие резервных механизмов и повышенной готовности всех лиц вахтенной службы к работе в случае возникновения аварийной ситуации.
Специальные меры по обеспечению плавания в стесненных условиях заключают в себе следующее:
тщательное предварительное планирование пути с проведением необходимых расчетов;
заблаговременная подготовка штурманской службы, четкая организация ее работы с распределением обязанностей в соответствии с опытом судоводителей;
более частое определение места судна и учет неодновременности измерения навигационных параметров;
повышенную точность счисления пути судна;
надежный контроль за достоверностью опознаваемых ориентиров;
непрерывный контроль движения судна и изменений окружающей обстановки;
учет ветрового дрейфа и сноса от течения с максимально возможной точностью;
тщательную подготовку всех судовых служб.
Главной предпосылкой безаварийного плавания является тщательная и заблаговременная подготовка к плаванию.
Обеспечение контроля за навигационной безопасностью.
Для районов со сложной навигационной обстановкой, где требуются частые обсервации при дефиците времени, на крупномасштабных картах или планах заранее строится сетка навигационных изолиний. Каждая линия на этой сетке соответствует постоянному значению навигационного параметра. Сетки вычерчиваются цветными шариковыми ручками и тем же цветом подписываются значения параметра. Использование таких сеток позволяет сократить затраты времени на определение места судна и наносить обсервованные точки на карту способом графической интерполяции между изолиниями на глаз сразу же после измерения параметров. Навигационная безопасность мореплавания может обеспечиваться обсервациями только с учетом из точности и частоты. Однако при выполнении обсерваций нет времени для расчета их точности. Поэтому все расчеты и построения по оценке точности планируемых обсерваций нужно производить заблаговременно при навигационной подготовке к плаванию.
Для оценки точности места судна традиционно применяется элипсы погрешностей или средняя квадратическая (она же радиальная или круговая) погрешность.
Резолюции ИМО утвержден “Стандарт точности судовождения” , согласно которому стандартной оценкой точности места судна принята 95%-ая фигура погрешности. Такая фигура получается путем увеличения среднеквадратического элипса погрешностей в 2,5 раза. Радиус круга R 95%-ой вероятности для практических целей используют с некоторым запасом равной двум погрешностям места (R=2*M).
Точность определения места зависит от погрешностей измерения навигационного параметра и положения судно относительно ориентира. Погрешность измерений характеризуется средними квадратическими значениями m, полученными по результатам специальных исследований. Используя значения m можно предвычислить 95%-ую погрешность определения места судна всеми способами и в любой точке перехода. Результаты такого предвычисления представляются в виде изолиний или маршрутных графиков точности, а также отметками и надписями на графическом плане перехода.
В качестве примера произведем расчет и построения маршрутного графика точности для пролива Босфор (точки 8 – 20 согласно таблицы рекомендованных курсов при плавании в прибрежных водах). Расчет произведем по данным колонки “Объекты и пеленги в момент поворота” для пяти способов определения.
Оценка точности определения по двум пеленгам производится по формуле
(2.3.1) где
DП – разность измеренных пеленгов,
D1 и D2 – расстояния до объектов,
D – расстояние между объектами,
mп – СКП пеленгования,
mDл – СКП принятой поправки компаса.
Столбики Rмкп, R,гккп и Rрлп рассчитаны по данной формуле с изменением СКП соответственно для магнитного, гироскопического компасов и РЛС. В качестве примера приведем первое значение первого из этих столбиков:
Оценка точности определения по двум расстояниям на примере первой строчки производится по формуле
(2.3.2)
где
mD – СКП радиолокационного расстояния ( в нашем случае на шкалах менее 4 миль).
Оценка точности определения по пеленгу и расстоянию, измеренным по РЛС производится по формуле
(2.3.3) кбтгде DD предельная погрешность объекта (для шкалы 2 мили принимаем 0,04 кбт)
Результаты расчетов по формуле (2.3.1) при измерении пеленгов по магнитному компасу, гирокомпасу и РЛС занесены в таблицу и построены графики Приложения №13 “Ряд 1”, “Ряд 2”и ‘Ряд 3” соответственно. Результаты расчетов по формуле (2.3.2) при измерении двух расстояний по РЛС занесены и построен график в “Ряд 4”. Результаты расчетов по формуле (2.3.3) при определении по пеленгу и расстоянию с помощью РДС занесены в колонку и построен график “Ряд 5”.
Расчет приливов.
Для определения высоты прилива служат Адмиралтейские таблицы приливов. Определим высоту прилива для стандартного порта Гибралтар в 16:00 на дату прохождения его согласно предварительной прокладки (09 июня). Данные о высоте и времени наступления полной и малой воды и ее уровне берем на соответствующую дату из Приложения 14а (Высокая вода в 05:26 – 0,8м, малая в 12:12 – 0,2м, высокая в 18:48 – 0,8м). На стандартной диаграмме (Приложение №14б) по осям высокой и малой воды откладываем соответственно 0,8 и 0,2м. и соединяем их прямой линией. На шкале разности времени под диаграммой наносим точку 18:48 – 16:00 = - 2 часа 48 минут. Из этой точки до пересечения с кривой прилива проводим прямую вертикальную линию, затем продолжаем ее до пересечения с линией, соединяющей полную и малую воды на рассматриваемую дату (0,2м – 0,8м) и далее проводим вертикальную линию до пересечения с осью высокой воды. В результате произведенных построения получаем, что 9 июня в 16 часов высота воды в порту Гибралтар составляет 0,56 метра.
Определим высоту и время наступления полной и малой воды в порту Сеута, который является вторичным по отношению к стандартному порту Гибралтар. Предварительные данные для определения разницы во времени и уровне наступления полной и малой воды по отношению к стандартному порту берем из Приложения 14в. Для получения окончательных данных разницы во времени и уровне наступления полной и малой воды во вторичном порту необходимо произвести ряд графических построений и заполнить Tidal Prediction Form. Определим разницу времени. Нанесем точки (Приложение №14г) соответствующие разнице –0040 в 0000 и 1200 и –0120 в 0700 и 1900 и соединим их линией (красной). Затем по оси Х отложим значения 0626 и 1848, а по оси Y получим соответственно разницу для утренней и вечерней полной воды –0116 (-76 минут) и –0118 (-70минут). Для получения значения разницы малой воды отложим точки –0040 в 0600 и –0140 в 1300. Соединим их прямой (зеленой). По оси Х отложим значение 1212, а по оси Y получим разность наступления малой воды в порту Сеута –0132 (-92 минуты). Для нахождения разности уровней (Приложение №14д) отложим точки 1,0 0,0 и 0,7 +0,1 (красная) для полной воды, и точки 0,3 +0,1 и 0,1 +0,1 (зеленая) для малой воды. Отложив по оси Х значения полной воды 0,8м и малой воды 0,2м для порта Гибралтар по оси Y получим соответственно разницы в уровне полной и малой воды для порта Сеута +0,04м и +0,1м. Сведем полученные данные в итоговую форму.
Standard port….GIBRALTAR.. Time/Height required …….
Secondary port ..Ceuta………… Date ..09 June.. Time zone…-0100..
Time | Height | ||||||
HW | LW | HW | HW | LW | HW | Range | |
Standard port | 0626 | 1212 | 1848 | 0,8 | 0,2 | 0,8 | 0,6 |
Seasonal change | Standard port | 0,0 | 0,0 | 0,0 | |||
Differences | -0116 | -0132 | -0118 | +0,04 | +0,1 | +0,04 | |
Seasonal change | Standard port | 0,0 | 0,0 | 0,0 | |||
Secondary port | 0510 | 1040 | 1730 | 0,84 | 0,3 | 0,84 | |
Duration | 0530 | ||||||
0650 |
HW 0510 GMT = 0610 LT
LW 1040 GMT = 1040 LT
HW 1730 GMT = 1830 LT
Обеспечение навигационной безопасности в процессе плавания и промысла.
Подготовка и контроль работы компасов и лага.
Непременным условием контроля навигационной безопасности плавания является своевременная подготовка, исправное состояние и умелое использование технических средств навигации. Компасы, магнитный и гироскопический являются основными приборами, обеспечивающими навигационную безопасность плавания. Компасы и лаг относятся о конвенционным приборам, обязательным для всех морских судов.