Смекни!
smekni.com

Синтез системы автоматического регулирования массы квадратного метра бумажного полотна (стр. 3 из 8)

При перемещении вдоль колебательной границы в направлении возрастании частоты от 0 до ¥ кривая штрихуется слева, т. к. Dw > 0. Если частоту менять в пределах от - ¥ до 0 (w < 0), то определитель меняет знак и, двигаясь вдоль увеличения частоты, нужно штриховать правую часть кривой. Таким образом, кривая колебательной границы проходится дважды, при этом штрихуется одна и та же часть кривой двойной штриховкой. Апериодическая граница устойчивости штрихуется в сторону колебательной границы устойчивости.

Параметры регулятора K1 ; K2, выбранные из области устойчивости системы, обеспечат затухание переходной составляющей её движения при любых начальных отклонениях и внешних воздействиях.

Расчет линии равного запаса устойчивости.

1.Выведем выражение расширенной АФЧХ регулирующего блока Wр.б.(m1jw)

Передаточная функция:

,

Заменим р на (j - m)w:

Запишем

в виде

=
, где

- расширенная АЧХ звена

-расширенная ФЧХ звена

Тогда:

2.Выведем выражение расширенной АФЧХ части системы, содержащей остальные элементы в контуре управления.

,

где

Заменим р на

, отсюда

Запишем

в виде

Тогда:

Между заданной степенью колебательности m системы и характером расширенных и частотных характеристик с тем же m существует определенная связь. Для нахождения системы на границе заданной степени колебательности m, определяющей заданный запас устойчивости, необходимо выполнение следующего соотношения:

или в показательной форме

или

Получили два условия.

Первое условие приводит к уравнению:

Второе условие к уравнению вида:

Решив уравнение относительно К1 и К2 получим:

0

0,005

0,01

0

0,6

1,2

0

0,5646

0,932

1

0,8253

0,3642

1

1,1411

1,3021

-0,0089

-0,0059

-0,0032

0

0

0,0001

Все значения К1 и К2, лежащие на кривой обеспечат заданные запас устойчивости. Значения К1 и К2, лежащие внутри области, ограниченной данной кривой и осями координат, обеспечат запас больше заданного или степень затухания больше заданной, а лежащие вне этой области – степень затухания меньше заданной. Специальными исследованиями было установлено, что настройки, расположенные чуть правее экстремума линии равного запаса устойчивости, обеспечивают минимум квадратичного интегрального критерия качества, поэтому эти настройки можно назвать оптимальными.

Получение переходного процесса системы на заданный вид воздействия.

Рассмотрим операторный метод расчета непрерывных систем. Суть метода заключается в том, что каждый элемент непрерывной системы заменяется его дискретным аналогом, для этого вводим в модель непрерывного элемента импульсный элемент.


Дискретная модель системы.



Импульсную модель элемента можно описать разностным уравнением, вид которого определяется формирующим элементом. Самым простым формирующим элементом является экстраполятор нулевого порядка с передаточной функцией вида:

, где Т0 – период дискретности. Тогда дискретная передаточная функция непрерывного элемента найдётся как:

Выбор периода дискретности Т0.

Допустимая погрешность моделирования определяется из условия выбора периода дискретности Т0 = Т/(10 ¸15), где Т – постоянная времени системы, при этом должно выполнятся условие: t / Т0 > 5 ¸ 10, где t - запаздывание системы.

Дискретная модель объекта регулирования:

, где
; m = t/T0 (число тактов запаздывания – целое число).

Дискретная модель регулятора совместно с регулирующим блоком.

Дискретная модель датчика: Wдат (Z) = Kд = 0.25

Система разностных уравнений, описывающих работу данной АСР, при переходном процессе.

Так как рассчитываем переходный процесс по задающему воздействию, то полагаем DXf = 0; DYf = 0.

1. Уравнение регулируемого параметра:

yc[n] = 0.8yc[n - 1] + 22.4x[n - 13]

2. Уравнение датчика:

y1[n] = Кд×yc[n] = 0.25yc[n]

3. Уравнение элемента сравнения:

ОШ[n] = Dg ×Кд – y1[n] = 0.375 - y1[n]

4. Уравнение регулирующего воздействия:

X[n] = X[n - 1] + Kр.о. ×K1× ОШ[n] + Kр.о. × (K2 T0 - K1 )× ОШ[n - 1]

X[n] = X[n - 1] + 0.0232 × ОШ[n] - 2.2316 × ОШ[n - 1]

Выбираем параметры настройки ПИ регулятора:

K1 = 2.234451

K2 = 0.027039

Отклонение регулируемой величины от установившегося значения должно быть не более 5%. D = 0.05 × | 1.5 | = 0.075

Расчёт переходного процесса системы по задающему воздействию

n

t

Yc[n]

Y1[n]

ОШ[n]

X[n]

-13

-130

0

0

0

0

-12

-120

0

0

0

0

-11

-110

0

0

0

0

-10

-100

0

0

0

0

-9

-90

0

0

0

0

-8

-80

0

0

0

0

-7

-70

0

0

0

0

-6

-60

0

0

0

0

-5

-50

0

0

0

0

-4

-40

0

0

0

0

-3

-30

0

0

0

0

-2

-20

0

0

0

0

-1

-10

0

0

0

0

0

0

0

0

0,375

0,008714

1

10

0

0

0,375

0,009769

2

20

0

0

0,375

0,010823

3

30

0

0

0,375

0,011878

4

40

0

0

0,375

0,012932

5

50

0

0

0,375

0,013987

6

60

0

0

0,375

0,015042

7

70

0

0

0,375

0,016096

8

80

0

0

0,375

0,017151

9

90

0

0

0,375

0,018205

10

100

0

0

0,375

0,01926

11

110

0

0

0,375

0,020314

12

120

0

0

0,375

0,021369

13

130

0,195197

0,048799

0,326201

0,021289

14

140

0,374977

0,093744

0,281256

0,021162

15

150

0,542423

0,135606

0,239394

0,020981

16

160

0,700002

0,175001

0,199999

0,020738

17

170

0,849687

0,212422

0,162578

0,020431

18

180

0,993058

0,248264

0,126736

0,020055

19

190

1,131376

0,282844

0,092156

0,019608

20

200

1,265653

0,316413

0,058587

0,019087

21

210

1,396697

0,349174

0,025826

0,018491

22

220

1,525154

0,381289

-0,00629

0,017817

23

230

1,651542

0,412885

-0,03789

0,017065

24

240

1,776274

0,444069

-0,06907

0,016234

25

250

1,899682

0,474921

-0,09992

0,015323

26

260

1,99663

0,499157

-0,12416

0,014479

27

270

2,071341

0,517835

-0,14284

0,013696

28

280

2,127036

0,531759

-0,15676

0,01297

29

290

2,166167

0,541542

-0,16654

0,012302

30

300

2,190591

0,547648

-0,17265

0,011692

31

310

2,201715

0,550429

-0,17543

0,011142

32

320

2,200597

0,550149

-0,17515

0,010655

33

330

2,188035

0,547009

-0,17201

0,010235

34

340

2,164623

0,541156

-0,16616

0,009888

35

350

2,130803

0,532701

-0,1577

0,009617

36

360

2,086905

0,521726

-0,14673

0,009428

37

370

2,033167

0,508292

-0,13329

0,009328

38

380

1,969768

0,492442

-0,11744

0,009321

39

390

1,900138

0,475034

-0,10003

0,009396

40

400

1,826891

0,456723

-0,08172

0,00954

41

410

1,752048

0,438012

-0,06301

0,009745

42

420

1,677207

0,419302

-0,0443

0,010003

43

430

1,603665

0,400916

-0,02592

0,010305

44

440

1,532508

0,383127

-0,00813

0,010646

45

450

1,464677

0,366169

0,008831

0,011017

46

460

1,401014

0,350254

0,024746

0,011412

47

470

1,342296

0,335574

0,039426

0,011822

48

480

1,289255

0,322314

0,052686

0,012241

49

490

1,242601

0,31065

0,06435

0,01266

50

500

1,203028

0,300757

0,074243

0,013071

51

510

1,171224

0,292806

0,082194

0,013465

52

520

1,147444

0,286861

0,088139

0,013834

53

530

1,13165

0,282912

0,092088

0,014174

54

540

1,123606

0,280901

0,094099

0,014479

55

550

1,122941

0,280735

0,094265

0,014748

56

560

1,129188

0,282297

0,092703

0,014977

57

570

1,141814

0,285453

0,089547

0,015164

58

580

1,160229

0,290057

0,084943

0,015309

59

590

1,183802

0,29595

0,07905

0,015411

60

600

1,21186

0,302965

0,072035

0,01547

61

610

1,243692

0,310923

0,064077

0,015488

62

620

1,278548

0,319637

0,055363

0,015466

63

630

1,315636

0,328909

0,046091

0,015406

64

640

1,354122

0,338531

0,036469

0,015312

65

650

1,393183

0,348296

0,026704

0,015187

66

660

1,432039

0,35801

0,01699

0,015037

67

670

1,469971

0,367493

0,007507

0,014864

68

680

1,506331

0,376583

-0,00158

0,014674

69

690

1,540544

0,385136

-0,01014

0,014471

70

700

1,572111

0,393028

-0,01803

0,014259

71

710

1,600609

0,400152

-0,02515

0,014043

72

720

1,625691

0,406423

-0,03142

0,013826

73

730

1,647084

0,411771

-0,03677

0,013614

74

740

1,664594

0,416149

-0,04115

0,013408

75

750

1,678103

0,419526

-0,04453

0,013214

76

760

1,687571

0,421893

-0,04689

0,013034

77

770

1,69304

0,42326

-0,04826

0,01287

78

780

1,69463

0,423658

-0,04866

0,012725

79

790

1,692528

0,423132

-0,04813

0,012601

80

800

1,68698

0,421745

-0,04675

0,012498

81

810

1,678283

0,419571

-0,04457

0,012417

82

820

1,666774

0,416693

-0,04169

0,012358

83

830

1,65282

0,413205

-0,0382

0,012322

84

840

1,636813

0,409203

-0,0342

0,012308

85

850

1,619159

0,40479

-0,02979

0,012314

86

860

1,600272

0,400068

-0,02507

0,01234

87

870

1,580568

0,395142

-0,02014

0,012384

88

880

1,560455

0,390114

-0,01511

0,012444

89

890

1,540327

0,385082

-0,01008

0,012519

90

900

1,520559

0,38014

-0,00514

0,012605

91

910

1,501498

0,375375

-0,00037

0,012701

92

920

1,483458

0,370865

0,004135

0,012805

93

930

1,466716

0,366679

0,008321

0,012914

94

940

1,451509

0,362877

0,012123

0,013026

95

950

1,438034

0,359509

0,015491

0,013138

96

960

1,426443

0,356611

0,018389

0,013249

97

970

1,416847

0,354212

0,020788

0,013357

98

980

1,409313

0,352328

0,022672

0,013459

99

990

1,403867

0,350967

0,024033

0,013554

100

1000

1,400495

0,350124

0,024876

0,013641

101

1010

1,399146

0,349787

0,025213

0,013719

102

1020

1,399735

0,349934

0,025066

0,013787

103

1030

1,402142

0,350536

0,024464

0,013843

104

1040

1,406225

0,351556

0,023444

0,013888

105

1050

1,411816

0,352954

0,022046

0,013922

106

1060

1,418727

0,354682

0,020318

0,013943

107

1070

1,426759

0,35669

0,01831

0,013954

108

1080

1,435702

0,358926

0,016074

0,013953

109

1090

1,445341

0,361335

0,013665

0,013943

110

1100

1,455459

0,363865

0,011135

0,013922

111

1110

1,465843

0,366461

0,008539

0,013893

112

1120

1,476287

0,369072

0,005928

0,013857

113

1130

1,486595

0,371649

0,003351

0,013813

114

1140

1,496584

0,374146

0,000854

0,013765

115

1150

1,506087

0,376522

-0,00152

0,013712

116

1160

1,514955

0,378739

-0,00374

0,013656

117

1170

1,523059

0,380765

-0,00576

0,013599

118

1180

1,530292

0,382573

-0,00757

0,01354

119

1190

1,536567

0,384142

-0,00914

0,013483

120

1200

1,541822

0,385456

-0,01046

0,013426

121

1210

1,546016

0,386504

-0,0115

0,013373

122

1220

1,549129

0,387282

-0,01228

0,013322

123

1230

1,551164

0,387791

-0,01279

0,013276

124

1240

1,552142

0,388035

-0,01304

0,013234

125

1250

1,552103

0,388026

-0,01303

0,013198

126

1260

1,551104

0,387776

-0,01278

0,013167

127

1270

1,549216

0,387304

-0,0123

0,013142

128

1280

1,546522

0,386631

-0,01163

0,013123

129

1290

1,543118

0,385779

-0,01078

0,01311

130

1300

1,539104

0,384776

-0,00978

0,013103

131

1310

1,534589

0,383647

-0,00865

0,013102

132

1320

1,529683

0,382421

-0,00742

0,013106

133

1330

1,524499

0,381125

-0,00612

0,013115

134

1340

1,519147

0,379787

-0,00479

0,013129

135

1350

1,513735

0,378434

-0,00343

0,013147

136

1360

1,508368

0,377092

-0,00209

0,013169

137

1370

1,503141

0,375785

-0,00079

0,013193

138

1380

1,498143

0,374536

0,000464

0,01322

139

1390

1,493454

0,373364

0,001636

0,013249

140

1400

1,489144

0,372286

0,002714

0,013278

141

1410

1,485272

0,371318

0,003682

0,013308

142

1420

1,481884

0,370471

0,004529

0,013338

143

1430

1,479017

0,369754

0,005246

0,013368

144

1440

1,476696

0,369174

0,005826

0,013396

145

1450

1,474932

0,368733

0,006267

0,013423

146

1460

1,473728

0,368432

0,006568

0,013447

147

1470

1,473076

0,368269

0,006731

0,013469

148

1480

1,472957

0,368239

0,006761

0,013489

149

1490

1,473344

0,368336

0,006664

0,013506

150

1500

1,474201

0,36855

0,00645

0,01352

151

1510

1,475489

0,368872

0,006128

0,01353

152

1520

1,477158

0,369289

0,005711

0,013538

153

1530

1,479157

0,369789

0,005211

0,013542

154

1540

1,481431

0,370358

0,004642

0,013544

155

1550

1,483924

0,370981

0,004019

0,013542

156

1560

1,486576

0,371644

0,003356

0,013538

157

1570

1,48933

0,372332

0,002668

0,013532

158

1580

1,49213

0,373032

0,001968

0,013523

159

1590

1,494921

0,37373

0,00127

0,013512

160

1600

1,497653

0,374413

0,000587

0,0135

161

1610

1,500278

0,375069

-6,9E-05

0,013486

162

1620

1,502753

0,375688

-0,00069

0,013472

163

1630

1,505042

0,37626

-0,00126

0,013456

164

1640

1,507111

0,376778

-0,00178

0,013441

165

1650

1,508936

0,377234

-0,00223

0,013425

166

1660

1,510495

0,377624

-0,00262

0,01341

167

1670

1,511775

0,377944

-0,00294

0,013395

168

1680

1,512766

0,378192

-0,00319

0,013381

169

1690

1,513468

0,378367

-0,00337

0,013368

170

1700

1,513882

0,37847

-0,00347

0,013356

171

1710

1,514017

0,378504

-0,0035

0,013346


СТУДЕНТ Ситников С.А. ГРУППА 2102