Смекни!
smekni.com

Синтез системы автоматического регулирования массы квадратного метра бумажного полотна (стр. 2 из 8)

Основные параметры объекта по каналу управления могут быть определены из этих графиков.



Основные параметры объекта по каналу управления могут быть

Частотные характеристики объекта по каналу управления.

Частотные характеристики описывают установившиеся вынужденные колебания на выходе звена, вызванные гармоническим воздействием на входе.

Выражения частотных характеристик по каналу управления могут быть получены из выражения частотной передаточной функции:

,

где А(w) - АЧХ объекта

j(w) - ФЧХ объекта

Зависимость отношения амплитуд выходных и входных колебаний от их частоты называется амплитудно-частотной характеристикой (АЧХ). Зависимость разности фазы выходных и входных колебаний от частоты называется фазо-частотной характеристикой (ФЧХ) системы.

Найдем модуль частотной передаточной функции (АЧХ):

(1­­­­*)

Частота Wпр., определяющая полосу частот пропускания объекта, найдется из условия:

, подставляем в (1*)

, отсюда

Угол фазового сдвига находится как арктангенс отношения мнимой части комплексного числа к вещественной:

С учетом того, что К0=112>0 выражение ФЧХ запишется в виде:

Частотные характеристики будем строить на диапазоне от 0 до 10 wпр.

Таблица 2

w,

с-1

0 0,02 0,04 0,06 0,08 0,1 0,12 0,14 0,16 0,18 0,2

АЧХ,

120,00

84,8528

53,6656

37,9473

29,1043

23,5339

19,7279

16,9706

14,8842

13,2518

11,9404

, рад.

0,0000

1,6146

3,6929

5,9510

8,2742

10,6266

12,9944

15,3711

17,7536

20,1399

22,5289

Из графика АЧХ видно: чем меньше частота входного сигнала, тем больше этот сигнал усиливается. При w = 0 коэффициент усиления равен максимальному значению 112. При больших частотах выходная величина по модулю стремится к нулю. Такие сигналы объект не пропустит.

С ростом частоты увеличивается также фазовый сдвиг выходных колебаний по отношению к входным. Фазо-частотная характеристика положительна, следовательно, выходные колебания по фазе опережают входные. При w = w0 j(w) = p.




Структурная схема системы регулирования

Структурная схема системы – графическое изображение АСР в виде совокупности динамических звеньев с указанием связей между ними.

Исходными данными для построения схемы служат передаточные функции звеньев.

По составленной схеме определяем передаточные функции системы:

1. Передаточная функция разомкнутой системы:

2.Передаточная функция замкнутой системы по каналу управления:

2. Передаточная функция замкнутой системы по возмущению в виде Df1

Построение области устойчивости системы.

1. Характеристический полином замкнутой системы получим из выражения:

Отсюда:

Д(р) =

2. Уравнение апериодической границы устойчивости соответствует при Р=0.

Получаем:

Þ К2 = 0

Найдем колебательную границу устойчивости, для этого подставим:

Р=jw

Тогда:

Решив уравнение относительно К1 и К2 , найдем выражение для колебательной границы устойчивости в виде:

Рассчитываем три точки колебательной границы устойчивости при w=0; Dw; 2Dw.

w [c-1]

0

0,005

0,01

К1,

3,434

3,3191

2,8446

К2,

0

0,0132

0,0382


СТУДЕНТ Ситников С.А. ГРУППА 2102

РАСЧЕТ ОБЛАСТИ УСТОЙЧИВОСТИ (ЛИНИИ РАВНОГО ЗАПАСА УСТ.) НЕПРЕР.АСР

ПАРАМЕТРЫ МОДЕЛЕЙ ИЗВЕСТНОЙ ЧАСТИ СИСТЕМЫ

МОДЕЛЬ ОБЪЕКТА ПО КАНАЛУ УПРАВЛЕНИЯ :

коэффициент передачи объекта = 112.0000

постоянная времени объекта = 50.0000

запаздывание объекта = 120.0000

Коэф.передачи исполн.устройства = 1.0000

Коэф.передачи регулир.органа = 0.0104

Коэффициент передачи датчика = 0.2500

РАСЧЕТ ОБЛАСТИ УСТОЙЧИВОСТИ

АПЕРИОДИЧЕСКАЯ ГРАНИЦА УСТОЙЧИВОСТИ K2 = 0

ТАБЛИЦА КОЛЕБАТЕЛЬНОЙ ГРАНИЦЫ УСТОЙЧИВОСТИ

W K1 K2

0.000000 -3.434066 0.000000

0.001538 -3.327219 0.001369

0.003077 -3.011959 0.005329

0.004615 -2.503887 0.011447

0.006154 -1.828233 0.019034

0.007692 -1.018726 0.027196

0.009231 -0.116080 0.034896

0.010769 0.833836 0.041032

0.012308 1.782074 0.044517

0.013846 2.678837 0.044370

0.015385 3.475768 0.039792

0.016923 4.128202 0.030245

0.018462 4.597282 0.015513

0.020000 4.851844 -0.004253

РАСЧЕТ ЛИНИИ РАВНОГО ЗАПАСА УСТОЙЧИВОСТИ

СТЕПЕНЬ КОЛЕБАТЕЛЬНОСТИ = 0.22

W K1 K2

0.000000 -3.434066 0.000000

0.001538 -2.954172 0.001362

0.003077 -2.334213 0.005027

0.004615 -1.620191 0.010232

0.006154 -0.858793 0.016105

0.007692 -0.095154 0.021747

0.009231 0.629134 0.026307

0.010769 1.277682 0.029049

0.012308 1.820598 0.029409

0.013846 2.235384 0.027029

0.015385 2.507436 0.021783

0.016923 2.630145 0.013783

0.018462 2.604631 0.003363

0.020000 2.439161 -0.008941


Область устойчивости системы в плоскости варьируемых параметров.


Определение направления штриховки колебательной границы устойчивости производится в соответствии со знаком определителя вида.

D(w)=

=
=