Смекни!
smekni.com

Проводниковые материалы (стр. 1 из 4)

ВВЕДЕНИЕ

В качестве проводников электрического тока могут быть использованы как твердые тела, так и жидкости, а при соответствующих условиях и газы. Важнейшими практически при­меняемыми в электротехнике твердыми проводниковыми материа­лами являются металлы и их сплавы.

Из металлических проводниковых материалов могут быть выде­лены металлы высокой проводимости, имеющие удельное сопротив­ление r при нормальной температуре не более 0,05 мкОм×м, и сплавы высокого сопротивления, имеющие r при нормальной температуре не менее 0,3 мкОм×м. Металлы высокой проводимости используются для проводов, токопроводящих жил кабелей, обмоток электриче­ских машин и трансформаторов и т. п. Металлы и сплавы высокого сопротивления применяются для изготовления резисторов, электро­нагревательных приборов, нитей ламп накаливания и т. п.

К жидким проводникам относятся расплавленные металлы и раз­личные электролиты. Для большинства металлов температура плавления высока; только ртуть, имею­щая температуру плавления около минус 39°С, может быть исполь­зована в качестве жидкого металлического проводника при нормаль­ной температуре. Другие металлы являются жидкими проводниками при повышенных температурах.

Механизм прохождения тока в металлах — как в твердом, так и в жидком состоянии — обусловлен движением (дрейфом) свободных электронов под воздействием электрического поля; поэтому металлы называют проводниками с электронной электропроводностью или проводниками первого рода. Проводниками второго рода, или электро­литами, являются растворы (в частности, водные) кислот, щелочей и солей. Прохождение тока через эти вещества связано с переносом вместе с электрическими зарядами ионов в соответствии с законами Фарадея, вследствие чего состав электролита постепенно изменя­ется, а на электродах выделяются продукты электролиза. Ионные кристаллы в расплавленном состоянии также являются провод­никами второго рода.

Все газы и пары, в том числе и пары металлов, при низких напряженностях электрического поля не являются проводниками. Од­нако, если напряженность поля превзойдет некоторое критическое значение, обеспечивающее начало ударной и фотоионизации, то газ может стать проводником с электронной и ионной электропровод­ностью. Сильно ионизированный газ при равенстве числа электро­нов числу положительных ионов в единице объема представляет собой особую проводящую среду, носящую название плазмы.

1. Электропроводность металлов.

Классическая электронная теория металлов представляет твер­дый проводник в виде системы, состоящей из узлов кристаллической ионной решетки, внутри которой находится электронный газ из коллективизированных (свободных) электронов. В свободное состоя­ние от каждого атома металла переходит от одного до двух электро­нов. К электронному газу применялись представления и законы статистики обычных газов. При изучении хаотического (теплового) и направленного под действием силы электрического поля движения электронов был выведен закон Ома. При столкновениях электронов с узлами кристаллической решетки энергия, накопленная при уско­рении электронов в электрическом поле, передается металлической основе проводчика, вследствие чего он нагревается. Рассмотрение этого вопроса привело к выводу закона Джоуля—Ленца. Таким образом, электронная теория металлов дала возможность аналитически описать и объяснить найденные ранее экспериментальным путем основные законы электропроводности и потерь электрической энергии в металлах. Оказалось возможным также объяснить и связь между электропроводностью и теплопроводностью металлов. Кроме того, некоторые опыты подтвердили гипотезу об электронном газе в металлах, а именно:

1. При длительном пропускании электрического тока через цепь, состоящую из одних металлических проводников, не наблюдается проникновения атомов одного металла в другой.

2. При нагреве металлов до высоких температур скорость тепло­вого движения свободных электронов увеличивается, и наиболее быстрые из них могут вылетать из металла, преодолевая силы поверх­ностного потенциального барьера.

3. В момент неожиданной остановки быстро двигавшегося про­водника происходит смещение электронного газа по закону инерции в направлении движения. Смещение электронов приводит к появ­лению разности потенциалов на концах заторможенного проводника, и стрелка подключаемого к ним измерительного прибора отклоня­ется по шкале.

4. Исследуя поведение металлических проводников в магнитном поле, установили, что вследствие искривления траектории электро­нов в металлической пластинке, помещенной в поперечное магнитное поле, появляется поперечная ЭДС и изменяется электрическое сопротивление проводника.

Однако выявились и противоречия некоторых выводов теории с опытными данными. Они со­стояли в расхождении температурной зависимо­сти удельного сопротивления, наблюдаемой на опыте и вытекающей из положений теории; в несоответствии теоретически полученных зна­чений теплоемкости металлов опытным данным. Наблюдаемая теплоемкость металлов меньше теоретической и такова, как будто электронный газ не погло­щает теплоту при нагреве металлического проводника. Эти про­тиворечия удалось преодолеть, рассматривая некоторые положе­ния с позиций квантовой механики. В отличие от классической электронной теории в квантовой механике принимается, что электронный газ в металлах при обычных температурах находится в состоянии вырождения. В этом состоянии энергия электронного газа почти не зависит от температуры, т. е. тепловое движение почти не изменяет энергию электронов. Поэтому на нагрев электронного газа теплота не затрачивается, что и обнаруживается при измерении теплоемкости металлов. В состоя­ние, аналогичное обычным газам, электронный газ приходит при температуре порядка тысяч Кельвинов. Представляя металл как систему, в которой положительные ионы скрепляются посредством свободно движущихся электронов, легко понять природу всех ос­новных свойств металлов: пластичности, ковкости, хорошей тепло­проводности и высокой электропроводности.

2. Свойства проводников.

К важнейшим параметрам, характери­зующим свойства проводниковых материалов, относятся:

1) удельная проводимость g или обратная ей величина — удельное сопротивление r,

2) температурный коэффициент удельного сопротивления ТКr или ar,

3) коэффициент теплопроводности gт,

4) контактная разность потенциалов и термоэлектродвижущая сила (термо-ЭДС),

5) работа выхода электронов из металла,

6) предел прочности при растяжении sр и относительное удлинение перед разрывом Dl/l.

Удельная проводимость и удельное со­противление проводников. Связь плотности тока J (в амперах на квадратный метр) и напряженности электрического поля (в вольтах на метр) в проводнике дается известной формулой:

J=gE (2-1)

(дифференциальная форма закона Ома); здесь g (в сименсах на метр) параметр проводникового материала, называемый его удельной про­водимостью: в соответствии с законом Ома у металлических провод­ников не зависит от напряженности электрического поля Е при из­менении последней в весьма широких пределах. Величина r = 1/g, обратная удельной проводимости и называемая удельным сопро­тивлением, для имеющего сопротивление R проводника длиной l с постоянным поперечным сечением S вычисляется по формуле

r = RS/l (2-2)

Удельное сопротивление измеряется в ом-метрах. Для измерения r проводниковых материалов разрешается пользоваться внесистемной единицей Ом×мм2/м; очевидно, что проволока из материала длиной 1 м с поперечным сечением 1 мм2 имеет сопротивление в омах, чис­ленно равно r материала в Ом×мм2/м.

Диапазон значений удельного сопротивления r металлических проводников (при нормальной температуре) довольно узок: от 0,016 для серебра и до примерно 10 мкОм×м для железохромоалюминиевых сплавов, т.е. он занимает всего три порядка. Удельная проводимость металлических проводников согласно клас­сической теории металлов может быть выражена следующим об­разом:

g = (e2n0l)/(2mvT) (2-3)

где е — заряд электрона; n0 — число свободных электронов в еди­нице объема металла; l средняя длина свободного пробега элект­рона между двумя соударениями с узлами решетки; т — масса электрона; vT средняя скорость теплового движения свободного электрона в металле.

Преобразование выражения (2-3) на основе положений квантовой механики приводит к формуле

g = K02/3l (2-4)

где K — численный коэффициент; остальные обозначения — прежние.

Для различных металлов скорости хаотического теплового дви­жения электронов vT (при определенной температуре) примерно оди­наковы. Незначительно различаются также и концентрации свобод­ных электронов п0 (например, для меди и никеля это различие меньше 10 %). Поэтому значение удельной проводимости у (или удельного сопротивления r) в основном зависит от средней длины свободного пробега электронов в

Рис. 2-1. Зависимость удельного сопротивления r меди от температуры

данном проводнике l, которая, в свою очередь, определяется структурой проводникового материала. Все чистые металлы с наиболее правильной кристаллической решеткой харак­теризуются наименьшими значениями удельного сопротивления; примеси, искажая решетку, приводят к увеличению r. К такому же выводу можно прийти, исходя из волновой природы электронов. Рассеяние электронных волн происходит на дефектах кристалличе­ской решетки, которые соизмеримы с расстоянием около четверти длины электронной волны. Нару­шения меньших размеров не вызы­вают заметного рассеяния волн. В металлическом проводнике, где длина волны электрона около 0,5 нм, микродефекты создают значительное рассеяние, уменьша­ющее подвижность электронов, и, следовательно, приводит к росту r материала.