Смекни!
smekni.com

Проводниковые материалы (стр. 4 из 4)

Рис. 3-2. Слои десятикратного ослабления для различных материалов в зависи­мости от энергии квантов излучения

Биметалл имеет механические и электрические свойства, проме­жуточные между свойствами сплошного медного и сплошного сталь­ного проводника того же сечения; прочность биметалла больше, чем меди, но электрическая проводимость меньше. Расположение меди в наружном слое, а стали внутри конструкции, а не наоборот, весьма важно: с одной стороны, при переменном токе достигается более высокая проводимость всего провода, в целом, с другой — медь защищает расположенную под ней сталь от коррозии. Биметалличе­ская проволока выпускается наружным диаметром от 1 до 4 мм содержанием меди не менее 50 % полной массы проволоки. Значе­ние Стр (из расчета на полное сечение проволоки) должно быть не менее 550—700 МПа, а Dl/l не более 2 %. Сопротивление 1 км би­металлической проволоки постоянному току (при 20 °С) в зависимости от диаметра от 60 (при 1 мм) до 4 Ом/км (при 4 мм).

Такую проволоку применяют для линий связи, линий электро­передачи и т. п. Из проводникового биметалла изготовляются шины для распределительных устройств, полосы для рубильников и раз­личные токопроводящие части электрических аппаратов.

Защитные свойства стали от излучений высокой энергии приведены на рис. 3-2.

4. Сверхпроводники и криопроводники

В 1911 г. нидерландский физик X. Камерлинг-Оннес, неза­долго перед тем (в 1908 г.) впервые получивший жидкий гелий (ге­лий был последним газом, который до того еще не удавалось пере­вести в жидкое состояние), исследовал электропроводность металлов при «гелиевых» температурах (температура сжижения гелия при нормальном давлении около 4,2 К; еще более низкие температуры могут быть получены при испарении жидкого гелия). При этом Ка­мерлинг-Оннес сделал поразительное открытие: он обнаружил, что при охлаждении до температуры, примерно равной температуре сжи­жения гелия, сопротивление кольца из замороженной ртути вне­запно, резким скачком падает до чрезвычайно малого, не подда­ющегося измерению, значения.

Такое явление, т. е. наличие у вещества практически бесконечной удельной проводимости, было названо сверхпроводимостью, тем­пература Тс, при охлаждении до которой вещество переходит в сверхнроводящее состояние, — температурой сверхпроводящего пе­рехода, а вещества, переходящие в сверхпроводящие состояние, — сверхпроводниками.

Переход в сверхпроводящее состояние является обратимым; при повышении температуры до значения Тс сверхпроводимость наруша­ется и вещество переходит в нормальное состояние с конечным зна­чением удельной проводимости g .

Рис. 4-1. Общий вид диаграммы состояния сверхпроводника первого рода

В настоящее время известно уже 35 сверхпроводниковых металлов и более тысячи сверхпроводниковых сплавов и химических соеди­нений различных элементов. В то же время многие вещества, в том числе и такие, обладающие весьма малыми значениями r при нормаль­ной температуре металлы, как серебро, медь, золото, платина и другие, при наиболее низких достигнутых в настоящее время температурах (около милликельвина) перевести в сверхпроводящее состояние не удалось.

Явление сверхпроводимости связано с тем, что электрический ток, однажды наведенный в сверх проводящем контуре, будет дли­тельно (годами) циркулировать по этому контуру без заметного уменьшения своей силы, и притом без всякого подвода энергии извне (конечно, если не учитывать неизбежного расхода энергии на работу охлаждающего устройства, которое должно поддерживать температуру сверхпроводящего контура ниже значения Тс, харак­терного для данного сверхпроводникового материала); такой сверхпроводящий контур создает в окружающем пространстве магнитное поле, подобно постоянному магниту. Поэтому обтекаемый электри­ческим током сверх проводящий соленоид должен представлять собой сверхпроводниковый электромагнит, не требующий питания от ис­точника тока. Однако первоначальные попытки изготовить практи­чески пригодный сверхпроводниковый электромагнит, создающий в окружающем пространстве магнитное поле с достаточно высокими напряженностью Н и магнитной индукцией В, закончились неуда­чей. Оказалось, что сверхпроводимость нарушается не только при повышении температуры до значений, превышающих Тс, но и при возникновении на поверхности сверхпроводника магнитного поля с магнитной индукцией, превышающей индукцию перехода В0 (в первом приближении, по крайней мере для чистых сверхпроводниковых металлов, безразлично, создается ли индукция Вс током, идущим по самому сверхпроводнику, или же сторонним источником магнитного поля). Это поясняется диаграммой состояния сверх­проводника, изображенной на рис. 4-1. Каждому значению тем­пературы Т данного материала, находящегося в сверх проводящем состоянии, соответствует свое значение индукции перехода Вс. Наибольшая возможная температура перехода Тс (критическая температура) данного сверхпровод­никового материала достигается при ничтожно малой магнитной индукции, т. е. для сверхпроводни­кового электромагнита — при весьма малой силе тока, идущего через обмотку этого электромагнита. Соответственно и наибольшее возможное значение Вс0 магнитной индукции перехода (критическая магнитная индукция) соответствует температуре сверхпроводника, ничтожно отличающейся от нуля Кельвина.

Рис. 4-2. Диаграммы состояния сверхпроводника II рода — станнида ниобия Nb3Sn (кривые 1 и 2) и сверхпроводника I рода — свинца РЬ (кривая 3)

В 50-х годах нашего столетия были открыты новые сверхпровод­ники, представляющие собой уже не чистые металлы, а сплавы или химические соединения. Эти сверхпроводники в отличие от чистых сверх проводниковых металлов (сверхпроводников I рода), названные сверхпроводниками II рода, обладают рядом особенностей. Переход из нормального в сверх проводящее состояние при охлаждении у них происходит не скачком (как у сверхпроводников I рода), а постепенно; у них существует промежуточное состояние между нижним ВС1 и верхним BС2 значениями критической магнитной индукции перехода для значений температур Т < TС0. В промежуточном состоянии сверхпроводимость при постоянном на­пряжении сохраняется, т. е. r = 0, но относительная маг­нитная проницаемость сверхпроводника mr > 0; при воздействии на сверхпроводник переменного напряжения в нем наблюдаются не­которые потери энергии и т. п. Кроме того, свойства сверхпровод­ников II рода в большой степени зависят от технологического режима изготовления и т. п. Из чистых металлов к сверхпроводникам II рода относятся лишь ниобий Nb, ванадий V и технеций Тс.

На рис. 4-2 представлена диаграмма со­стояния типичного сверхпроводника II ро­да — интерметаллического соединения, стан-нида ниобия Nb3Sn. Кривая 1 дает значения BС01, кривая 2—значения ВC02; заштрихована область промежуточного состояния. Для со­поставления здесь же приведена диаграмма состояния для типичного сверхпроводника I рода—свинца Рb.

Криопроводники. Помимо явления сверхпроводимости, в совре­менной электротехнике все шире используется явление криопроводимости, т. е. достижение металлами весьма малого значения удельного сопротивления при криогенных температурах (но без перехода в сверхпроводящее состояние). Металлы, обладающие таким свойством, называются криопроводниками.

Очевидно, что физическая сущность криопроводимости не сходна с физической сущностью явления сверхпроводимости. Криопроводимость — частный случай нормальной электропроводности металлов в условиях криогенных температур.

Весьма малое, но все же конечное значение r криопроводников ограничивает допустимую плотность тока в них, хотя эта плотность может быть все же гораздо выше, чем в обычных металлических проводниках при нормальной или повышенной температуре. Криопроводники, у которых при изменении температуры в широком диапазоне р меняется плавно, без скачков, не могут использоваться в устройствах, действие которых основано на триггерном эффекте возникновения и нарушения сверхпроводимости (например, в сверх­проводниковых запоминающих устройствах).

Применение криопроводников вместо сверхпроводников в элек­трических машинах, аппаратах и других электротехнических устрой­ствах может иметь свои преимущества. Использование в качестве хладагента жидкого водорода или жидкого азота (вместо жидкого гелия, который значительно дороже других хладагентов) упрощает и удешевляет выпол­нение тепловой изоляции ус­тройства и уменьшает расход мощности на охлаждение. Кроме того, в сверхпроводящем кон­туре с большим током нака­пливается большое количество энергии магнитного поля, рав­ное LI2/2 Дж (L —индуктив­ность, Гн; I —ток, А). При случайном повышении температуры или магнитной индукции свыше значений, соответствующих переходу сверхпроводника в нормальное состояние хотя бы в малой части сверхпроводящего контура, сверх­проводимость будет нарушена, что приведет к внезапному освобож­дению большого количества энергии. Для криопроводящей цепи такой опасности нет, так как повышение температуры может повлечь за собой лишь постепенное, плавное увеличение сопротивления. Наибольший интерес для применения в качестве криопроводникового материала представляют собой: при темпера­туре жидкого водорода — алюминий, а при температуре жидкого азота —бериллий.

Таким образом, проблема выбора оптимального (т. е. имеющего при рабочей температуре наименьшее удельное сопротивление при наилучших других технико-экономических показателях) криопровод­никового материала сводится в основном к следующему: применить легко доступный и дешевый алюминий и получить наименьшее возможное для криопроводника значение удельного сопротивления, но пойти на использование для охлаждения устройства жидкого водорода, что все же требует преодоления некоторых затруднений и, в частности, необходимости учета взрывоопасности водородо-воздушной смеси; или же применять более дорогой, дефицитный, сложный в технологическом отношении бериллий, но зато исполь­зовать в качестве хладагента более дешевый и легко доступный жидкий азот и тем самым уменьшить затраты мощности на охлаждение.

Во всех случаях для получения высококаче­ственных криопроводннков требуются исключи­тельно высокая чистота металла (отсутствие при­месей) и отсутствие на­клепа (отожженное со­стояние). Вредное влияние примесей и наклепа на удельное сопротивление металлов при криогенных темпера­турах выражено значи­тельно более сильно, чем при нормальной температуре.

ЛИТЕРАТУРА

1. Боородицкий Н. П. Электротехнические материалы.- Л.: Энергоатомиздат, 1985

2. Проводниковые материалы / Под ред. Л. Ш. Казарновского. –М.: Энергия, 1970

3. Методические разработки к курсам “Конструкционные Материалы” и “Материаловедение” / Под ред. А. А. Клыпина. –М.: Издательство МАИ, 1993

4. Учебное пособие к лабораторным работам по металловедению. /Под ред. О. Х. Фаткуллина.- М.: Издательство МАИ