Смекни!
smekni.com

Проводниковые материалы (стр. 2 из 4)

Температурный коэффициент удельного сопротивления металлов. Число носителей заряда (концентрация свободных электронов) в металлическом проводнике при повышении температуры практически остается неизменным. Однако вследствие усиления колебаний узлов кристаллической ре­шетки с ростом температуры появляется все больше и больше препятствий на пути направленного движения свободных электронов под действием электрического поля, т. е. уменьшается средняя длина свободного пробега электрона l. уменьшается подвижность электронов и, как следствие, уменьшается удельная проводимость металлов и возрастает удельное сопротивление (рис. 2-1). Иными словами, температурный коэффициент удельного сопротивления металлов, (кельвин в минус первой степени)

TKr =ar = (1/r) (dr/dT) (2-5)

положителен. Согласно выводам электронной теории металлов значе­ния ar., чистых металлов в твердом состоянии должны быть близки к температурному коэффициенту расширения идеальных газов, т.е. 1/273»0,0037 К-1. При изменении температуры в узких диапазонах на практике допустима кусочно-линейная аппрокси­мация зависимости r (Т); в этом случае принимают, что

r2 = r1 [1+ar (T2 –T1)] (2-6)

где r1 , и r2 — удельные сопротивления проводникового материала при температурах Т1, и T2, соответственно (при этом T2 > Т1);

ar — так называемый средний температурный коэффициент удель­ного сопротивления данного материала в диапазоне температур от Т1, до Т2.

Изменение удельного сопротивления металлов при плавлении. При переходе из твердого состояния в жидкое у большинства металлов наблюдается увеличение удельного сопротивления r, как это видно, например для меди, из рис. 2-1; однако у некоторых металлов r при плавлении уменьшается. Удельное сопротивление увеличивается при плавлении у тех метал­лов, у которых при плавлении увеличивается объем, т. е. уменьша­ется плотность; и, наоборот, у металлов, уменьшающих свой объем при плавлении, — галлия, висмута, сурьмы r уменьшается.

Удельное сопротивление сплавов. Как уже указывалось, примеси и нарушения правильной структуры ме­таллов увеличивают их удельное сопротивление. Значительное воз­растание r наблюдается при сплавлении двух металлов в том случае, если они образуют друг с другом твердый раствор, т. е. при (утвер­ждении совместно кристаллизуются, и атомы одного металла входят в кристаллическую решетку другого.

Теплопроводность металлов. За передачу теп­лоты через металл в основном ответственны те же свободные элект­роны, которые определяют и электропроводность металлов и число которых в единице объема металла весьма велико. Поэтому, как правило, коэффициент теплопроводности gT металлов намного больше, чем коэффициент теплопроводности диэлектриков. Очевидно, что при прочих равных условиях, чем больше удельная электрическая проводимость у металла, тем больше должен быть и его коэффициент теплопроводности. Легко также видеть, что при по­вышении температуры, когда подвижность электронов в металле и соответственно его удельная проводимость g уменьшаются, отноше­ние коэффициента теплопроводности металла к его удельной про­водимости gT/g должно возрастать. Математически это выражается законом Вчдемана—Франца—Лоренца:

gT/g = LoT (2-7)

где Т —термодинамическая температура, К; Lo —число Лоренца, равное

Lo=(p2k2)/(3e2) (2-8)

Подставляя в формулу (2-8) значения постоянной Больцмана k = 1.38 ×10-23 Дж/К и заряда электрона е = 1,6×10-19 Кл, полу­чаем Lo = 2,45×10-8 B2K2.

Термоэлектродвижущая сила. При соприкос­новении двух различных металлических проводников между ними возникает контактная разность потенциалов. Причина появления этой разности потенциалов за­ключается в различии значений работы выхода электронов из раз­личных металлов, а также в том, что концентрация электронов, а следовательно, и давление электронного газа у разных металлов и сплавов могут быть неодинаковыми. Из электронной тео­рии металлов следует, что контактная разность потенциалов между металлами А и В равна

UAB=UB - UA + (kT/e) ln (n0A/n0B) (2-9)

где UA и UB потенциалы соприкасающихся металлов; n0A и n0B — концентрации электронов в металлах А и В; k — постоянная Больцмана; e —абсолютная величина заряда электрона.

Если температуры «спаев» одинаковы, то сумма разности потен­циалов в замкнутой цепи равна нулю. Иначе обстоит дело, когда один из спаев имеет температуру T1 , а другой —температуру Т2(рис. 2-2).

Рис. 2-2. Схема термопары

В этом случае между спаями возникает термо-ЭДС, равная

U = (k/e) (T1 - T2 ) ln (n0A/n0B) (2-10)

Что можно записать в виде

U = y (T1 – T2) (2-11)

где y — постоянный для данной пары проводников коэффициент термоЭДС, т. е. термо-ЭДС должна быть пропорциональна разности температур спаев.

Температурный коэффициент линейного расширения проводников. Этот коэффициент, интересен не только при рассмотрении работы различных сопряжен­ных материалов в той или иной конструкции (возможность растрескивания или нарушения вакуум-плотного соединения со стеклами, керамикой при изменении температуры и т. п.). Он необходим также и для расчета температурного коэффициента электрического сопротивления провода

TKR = aR = ar - al (2-12)

3. Материалы высокой проводимости.

Медь. Преимущества меди, обеспечивающие ей ши­рокое применение в качестве проводникового материала, следующие:

1) малое удельное сопротивление (из всех материалов только серебро имеет несколько меньшее удельное сопротивление, чем медь);

2) достаточно высокая механическая прочность;

3) удовлетворитель­ная в большинстве случаев стойкость по отношению к коррозии (медь окисляется на воздухе даже в условиях высокой влажности значи­тельно медленнее, чем, например, железо; интенсивное окисле­ние меди происходит только при повышенных температурах);

4) хорошая обрабатываемость (медь прокатывается в ли­сты, ленты и протягивается в проволоку, толщина которой может быть доведена до тысячных долей миллиметра);

5) относительная лег­кость пайки и сварки.

Медь получают чаще всего путем переработки сульфидных руд. После нескольких плавок руды и об­жигов с интенсивным дутьем медь, предназначенная для электро­техники, обязательно проходит процесс электролитической очистки. Полученные после электролиза катодные пластины меди переплав­ляют в болванки массой 80—90 кг, которые прокатывают и протя­гивают в изделия требующегося поперечного сечения. При изготовле­нии проволоки болванки сперва подвергают горячей прокатке в так называемую катанку диаметром 6,5—7,2 мм; затем катанку про­травливают в слабом растворе серной кислоты, чтобы удалить с ее поверхности оксид меди СuО, образующийся при нагреве, а затем уже протягивают без подогрева в проволоку нужных диаметров — до 0,03—0,02 мм.

Стандартная медь, в процентах по отношению к удельной про­водимости которой иногда выражают удельные проводимости метал­лов и сплавов, в отожженном состоянии при 20 °С имеет удельную проводимость 58 МСм/м, т. е. r = 0,017241 мкОм×м. Твердую медь употребляют там, где надо обеспечить особо высокую механическую прочность, твердость и со­противляемость истиранию (для контактных проводов, для шин рас­пределительных устройств, для коллекторных пластин электрических машин и пр.). Мягкую медь в виде проволок круглого и прямоуголь­ного сечения применяют главным образом в качестве токопроводящих жил кабелей и обмоточных проводов, где важна гибкость и плас­тичность (не должна пружинить при изгибе), а не прочность. Медь является сравнительно дорогим и дефицитным материалом. Поэтому она должна расходоваться весьма экономно. Отходы меди на электротехнических предприятиях необходимо тщательно соби­рать; важно не смешивать их с другими металлами, а также с менее чистой (не электротехнической) медью, чтобы можно было эти от­ходы переплавить и вновь использовать в качестве электротехниче­ской меди. Медь как проводниковый материал все шире заменяется другими металлами, в особенности алюминием.

Сплавы меди. В отдельных случаях помимо чистой меди в качестве проводникового материала применяются ее сплавы с оло­вом, кремнием, фосфором, бериллием, хромом, магнием, кадмием. Такие сплавы, носящие название бронз, при правильно подобранном составе имеют значительно более высокие механические свойства, чем чистая медь: sр бронз может быть 800—1200 МПа и более. Бронзы широко применяют для изготовления токопроводящих пру­жин и т. п. Введение в медь кадмия при сравнительно малом сниже­нии удельной проводимости значительно повышает механическую прочность и твердость. Кадмиевую бронзу применяют для контактных проводов и коллекторных пластин особо ответствен­ного назначения. Еще большей механической прочностью обладает бериллиевая бронза (sр —до 1350 МПа). Сплав меди с цинком — латунь — обладает достаточно высоким относительным удлинением перед разрывом при повышенном по сравнению с чистой медью пре­деле прочности при растяжении. Это дает латуни технологические преимущества перед медью при обработке штамповкой, глубокой вытяжкой и т. п. В соответствии с этим латунь применяют в электро­технике для изготовления всевозможных токопроводящих деталей.