Смекни!
smekni.com

Механизмы качающегося конвейера (стр. 4 из 5)

Момент сил инерции 3 звена

Момент сил инерции 4 звена

На звене 1 момент сил инерции равен 0, так как угловое ускорение равно 0.

2.4. Построение планов сил. Определение реакции в кинематических парах механизма и

уравновешивающего момента.

Структурная группа 4-5.

Изображаем на листе структурную группу 4-5 в заданном положении для расчета. Прикладываем к звеньям все действующие внешние силы, моменты и реакции опор. Составляем уравнение суммы моментов всех сил относительно точки D:

Находим реакцию

Выбираем полюс для построения плана сил. Определяем масштабный коэффициент плана сил по формуле:

где

- действительное значении реакции ( Н ),
- длина отрезка изображающего реакцию
( мм ).

Строим план сил с учетом масштабного коэффициента. Из плана сил находим неизвестные реакции путем умножения длины отрезка изображающего реакцию на масштабный коэффициент. Результаты заносим в таблицу 7.

Таблица 7.

н н н н н н н
365,2 10752 10758 10758 9490,2 9490,2 2777,7

Структурная группа 2-3.

Изображаем на листе структурную группу 2-3 в заданном положении для расчета. Прикладываем к звеньям все действующие внешние силы, моменты и реакции опор. Составляем уравнение суммы моментов всех сил относительно точки В:

Звено 2.

Находим реакцию

Звено 3.

Находим реакцию

Строим план сил с учетом масштабного коэффициента. Из плана сил находим неизвестные реакции путем умножения длины отрезка изображающего реакцию на масштабный коэффициент. Результаты заносим в таблицу 8.

Таблица 8.

н н н н н н н Н
49,9 19113,78 18113,85 18113,85 21,3 17072,16 17072,18 18140,22

Структурная группа Ведущее звено.

Изображаем на листе структурную группу ведущее звено в заданном положении для расчета. Прикладываем к звеньям все действующие внешние силы, моменты и реакции опор. Составляем уравнение суммы моментов всех сил относительно точки О:

Находим уравновешивающую силу РУ:

Находим уравновешивающий момент по формуле:

2.5. Рычаг Жуковского.

Возьмем план скоростей и повернем его на 90Å вокруг полюса в сторону вращения ведущего звена. Нанесем на него все действующие силы. Сумма моментов даст нам уравновешивающий момент.

Сравним между собой момент полученный при силовом расчете с моментом на рычаге:

3. Проектирование кинематической схемы планетарного редуктора и построение картины эвольвентного зацепления.

3.1. Исходные данные.

Исходные данные для расчета в таблице 9. Схема планетарного редуктора и простой ступени редуктора (Рисунок 2.)

Таблица 9.

Частота вращения двигателя Частота вращения на выходном валу Модуль зубчатых колес планетарной ступени редуктора Число зубьев простой передачи редуктора Модуль зубьев z1 и z2
пДВ n1 mI z1 z2 m
1350 70 6 13 39 10

Рисунок 3.

3.2. Расчет и проектирование кинематической схемы планетарного редуктора.

Определяем передаточное отношение редуктора

Определяем передаточное отношение простой пары 1-2

Определяем передаточное отношение планетарного редуктора

Из условия соостности

и формулы для передаточного отношения
выразим отношение
.

Определяемся, что колесо 3 меньшее и задаемся значением числа зубьев z3 ( из условия zмин ≥15). Устанавливаем число зубьев z3=17.

Определяем число зубьев z4.

Устанавливаем число зубьев z4=37

Определяем число зубьев z5.

Окончательно передаточное отношение U3H ,будет равно:

Определяем число сателлитов из условия сборки

,где q – целое число