Момент сил инерции 3 звена
Момент сил инерции 4 звена
На звене 1 момент сил инерции равен 0, так как угловое ускорение равно 0.
2.4. Построение планов сил. Определение реакции в кинематических парах механизма и
уравновешивающего момента.
Структурная группа 4-5.
Изображаем на листе структурную группу 4-5 в заданном положении для расчета. Прикладываем к звеньям все действующие внешние силы, моменты и реакции опор. Составляем уравнение суммы моментов всех сил относительно точки D:
Находим реакцию
Выбираем полюс для построения плана сил. Определяем масштабный коэффициент плана сил по формуле:
где - действительное значении реакции ( Н ), - длина отрезка изображающего реакцию ( мм ).
Строим план сил с учетом масштабного коэффициента. Из плана сил находим неизвестные реакции путем умножения длины отрезка изображающего реакцию на масштабный коэффициент. Результаты заносим в таблицу 7.
Таблица 7.
н | н | н | н | н | н | н |
365,2 | 10752 | 10758 | 10758 | 9490,2 | 9490,2 | 2777,7 |
Структурная группа 2-3.
Изображаем на листе структурную группу 2-3 в заданном положении для расчета. Прикладываем к звеньям все действующие внешние силы, моменты и реакции опор. Составляем уравнение суммы моментов всех сил относительно точки В:
Звено 2.
Находим реакцию
Звено 3.
Находим реакцию
Строим план сил с учетом масштабного коэффициента. Из плана сил находим неизвестные реакции путем умножения длины отрезка изображающего реакцию на масштабный коэффициент. Результаты заносим в таблицу 8.
Таблица 8.
н | н | н | н | н | н | н | Н |
49,9 | 19113,78 | 18113,85 | 18113,85 | 21,3 | 17072,16 | 17072,18 | 18140,22 |
Структурная группа Ведущее звено.
Изображаем на листе структурную группу ведущее звено в заданном положении для расчета. Прикладываем к звеньям все действующие внешние силы, моменты и реакции опор. Составляем уравнение суммы моментов всех сил относительно точки О:
Находим уравновешивающую силу РУ:
Находим уравновешивающий момент по формуле:
2.5. Рычаг Жуковского.
Возьмем план скоростей и повернем его на 90Å вокруг полюса в сторону вращения ведущего звена. Нанесем на него все действующие силы. Сумма моментов даст нам уравновешивающий момент.
Сравним между собой момент полученный при силовом расчете с моментом на рычаге:
3. Проектирование кинематической схемы планетарного редуктора и построение картины эвольвентного зацепления.
3.1. Исходные данные.
Исходные данные для расчета в таблице 9. Схема планетарного редуктора и простой ступени редуктора (Рисунок 2.)
Таблица 9.
Частота вращения двигателя | Частота вращения на выходном валу | Модуль зубчатых колес планетарной ступени редуктора | Число зубьев простой передачи редуктора | Модуль зубьев z1 и z2 | |
пДВ | n1 | mI | z1 | z2 | m |
1350 | 70 | 6 | 13 | 39 | 10 |
Рисунок 3.
3.2. Расчет и проектирование кинематической схемы планетарного редуктора.
Определяем передаточное отношение редуктора
Определяем передаточное отношение простой пары 1-2
Определяем передаточное отношение планетарного редуктора
Из условия соостности и формулы для передаточного отношения выразим отношение .
Определяемся, что колесо 3 меньшее и задаемся значением числа зубьев z3 ( из условия zмин ≥15). Устанавливаем число зубьев z3=17.
Определяем число зубьев z4.
Устанавливаем число зубьев z4=37
Определяем число зубьев z5.
Окончательно передаточное отношение U3H ,будет равно:
Определяем число сателлитов из условия сборки ,где q – целое число