Смекни!
smekni.com

Метрология и стандартизация (стр. 1 из 5)

Министерство образования

Российской федерации.

Тюменский государственный нефтегазовый университет

Институт транспорта

Кафедра: Метрологии, стандартизации

и сертификации

Реферат

На тему: «Метрология и стандартизация».

Выполнил:

студент гр. ___________

Relax

Проверил:

Тюмень 2001

Содержание

Стр.

I. Метрология и технические измерения. 3

1.1. Метрология 3

1.2. Средства измерений 4

1.3. Методы измерений 5

1.4. Основные параметры средств измерений 6

1.5. Погрешности измерения 8

II. Основные понятия о стандартизации. Государственная

система стандартизации. 10

2.1. Стандартизация и стандарт. 10

2.2. Категории стандартов 14

2.3. Виды стандартов 16

2.4 Планирование работ по стандартизации 17

2.5. Патентная чистота стандартов 18

2.6. Внедрение и пересмотр стандартов 19

III. Краткие сведения о международной стандартизации. 20

3.1. Стандартизация, проводимая в рамках СЭВ 22

Список использованной литературы 24

I. МЕТРОЛОГИЯ И ТЕХНИЧЕСКИЕ ИЗМЕРЕНИЯ.

1.1. Метрология

Метрология — наука об измерениях физических вели­чин, методах и средствах обеспечения их единства и способах дости­жения требуемой точности.

Основные задачи метрологии, (ГОСТ 16263—70) — установление единиц физических величин, государственных эталонов и образцовых средств измерений, разработка теории, методов и средств измерений и контроля, обеспечение единства измерений и единообразных средств измерений, разработка методов оценки погрешностей, со­стояния средств измерения и контроля, а также передачи размеров единиц от эталонов или образцовых средств измерений рабочим сред­ствам измерений.

Измерение физической величины выполняют опытным путем с помощью технических средств. В результате измерения получают значение физической величины

Q = q*U,

где q числовое значение физической величины в принятых еди­ницах; U — единица физической величины.

Значение физической величины Q, найденное при измерении, на­зывают действительным. В ряде случаев нет необходимости опреде­лять действительное значение физической величины, например при оценке соответствия физической величины установленному допуску. При этом достаточно определить принадлежность физической вели­чины некоторой области Т:

Q

Т или Q
Т.

Следовательно, при контроле определяют соответствие действительного значения физической величины установленным значениям. Примером контрольных средств являются калибры, шаблоны, уст­ройства с электроконтактными преобразователями.

Нормативно-правовой основой метрологического обеспечения точности измерений является государственная система обеспечения единство измерений (ГСИ). Основные нормативно-технические до­кументы ГСИ — государственные стандарты, В соответствии с реко­мендациями XI Генеральной конференции по мерам и весам в 1960 г. принята Международная система единиц (СИ), на основе которой для обязательного применения разработан ГОСТ 8.417—81 (СТ СЭВ 1052—78) (введен в действие с 01.01.1980 г.).

Основными единицами физических величин в СИ являются: длины — метр (м), массы — килограмм (кг), времени — секунда (с), силы электрического тока — ампер (А), термодинамической темпе­ратуры — Кельвин (К), силы света — Кандела (кд), количества ве­щества — моль (моль). Дополнительные единицы СИ: радиан (рад) и стерадиан (ср) — для измерения плоского и телесного углов соот­ветственно.

Производные единицы СИ получены из основных с помощью уравнений связи между физическими величинами. Так, единицей силы является ньютон: 1Н == 1 кг*м-1-2, единицей давления — Паскаль 1 Па = 1 кг*м-1-2 и т. д. В СИ для обозначения десятичных кратных (умноженных на 10 в положительной степени) и дельных (умноженных на 10 в отрицательной степени) приняты следующие приставки: экса (Э) — Ю18, пета (П) — 1015, тера (Т) — 1012, гига (Г) – 109, мега (М) — 106, кило (к) — 103, гекто (г) — 102, дека (да) — 101, децн (д) — 10-1, санти (с) — 10-2, милли (м) — 10-3, мнкро (мк) — 10-6, нано (н) — 10-9, пико (п) — 10-12, фемто (ф) — 10-15, атто (а) — 10-18. Так, в соответствии с СИ тысячная доля мил­лиметра (микрометр) 0,001 мм == 1 мкм.

1.2.Средства измерений.

Технические средства, используемые при измерениях и имеющие нормированные метрологические свойства, называют средствами измерения.

Эталоны — средства измерений, официально утвержденные и обеспечивающие воспроизведение и (или) хранение единицы физиче­ской величины с целью передачи ее размера нижестоящим по пове­рочной схеме средствам измерений.

Меры — средства измерений, предназначенные для воспроизве­дения заданного размера физическом величины, В технике часто ис­пользуют наборы мер, например, гирь, плоскопараллельных конце­вых мер длины (плиток), конденсаторов и т. п.

Образцовые средства измерений — меры, измерительные приборы или преобразователи, утвержденные в качестве образцовых для поверки по ним других средств измерений. Рабочие средства применяют для измерений, не связанных с передачей размера единиц.

Порядок передачи размера единиц физической величины от эта­лона или исходного образцового средства к средствам более низких разрядов (вплоть до рабочих) устанавливают в соответствии с пове­рочной схемой. Так, по одной из поверочных схем передача единицы длины путем последовательного лабораторного сличения и поверок производится от рабочего эталона к образцовым мерам высшего раз­ряда, от них образцовым мерам низших разрядов, а от последних к рабочим средствам измерения (оптиметрам, измерительным маши­нам, контрольным автоматам и т. п.).

1.3.Методы измерений.

При измерениях используют разнообразные методы (ГОСТ 16263—70), представляющие собой совокупность приемов использования различных физических принципов и средств. При прямых измерениях значения физической величины находят из опытных данных, при косвенных — на основании известной зависимости от величин, подвергаемых прямым измерениям. Так, диа­метр детали можно непосредственно измерить как расстояние между диаметрально противоположными точками (прямое измерение) либо определить из зависимости, связывающей этот диаметр, длину дуги и стягивающую ее хорду, измерив непосредственно последние вели­чины (косвенное измерение),

Абсолютные измерения основаны на прямых измерениях основ­ных величин и использовании значений физических констант (на­пример, измерение длины штангенциркулем). При относительных измерениях величину сравнивают g одноименной, играющей роль еди­ницы или принятой за исходную. Примером относительного изме­рения является измерение диаметра вращающейся детали по числу оборотов соприкасающегося с ней аттестованного ролика.

При методе непосредственной опенки значение физической вели­чины определяют непосредственно по отсчетному устройству при­бора прямого действия (например, измерение давления пружин­ным манометром), при методе сравнения с мерой измеряемую вели­чину сравнивают с мерой. Например, с помощью гирь уравновеши­вают на рычажных весах измеряемую массу детали. Разновидностью метода сравнения с мерой является метод противопоставления, при котором измеряемая величина и величина, воспроизводимая мерой, одновременно воздействуют на прибор сравнения, позволяющий установить соотношение между этими величинами (например, изме­рение сопротивления по мостовой схеме с включением в диагональ моста показывающего прибора).

При дифференциальном, методе измеряемую величину сравнивают с известной величиной, воспроизводимой мерой. Этим методом, на­пример, определяют отклонение контролируемого диаметра детали на оптиметре после его настройки на ноль по блоку концевых мер длины. Нулевой метод — также разновидность метода сравнения с мерой, при котором результирующий эффект воздействия величин на прибор сравнения доводят до нуля. Подобным методом измеряют электрическое сопротивление по схеме моста с полным его уравнове­шиванием. При методе совпадений разность между измеряемой вели­чиной и величиной, воспроизводимой мерой, определяют, используя совпадения отметок шкал или периодических сигналов (например, при измерении штангенциркулем используют совпадение отметок основной и нониусной шкал). Поэлементный метод характеризуется измерением каждого параметра изделия в отдельности (например, эксцентриситета, овальности, огранки цилиндрического вала). Ком­плексный метод характеризуется измерением суммарного показа­теля качества, на который оказывают влияния отдельные его состав­ляющие (например, измерение радиального биения цилиндрической детали, на которое влияют эксцентриситет, овальность и др.; кон­троль положения профиля по предельным контурам и т. п.).

1.4.Основные параметры средств измерений.

Длина деления шкалы (рис. 1) — расстояние между осями (центрами) двух соседних отметок шкалы, измеренное вдоль воображаемой линии, проходя­щей через середины самых коротких отметок шкалы. Цена деления шкалы — разность значений величины, соответствующих двум соседним от­меткам шкалы (1 мкм для оптиметра, длиномера и т. п.).