Ко второй группе относятся методы, в основе которых лежат достаточно строгие формализованные аналитические зависимости. Известны десятки этих методов; они составляют второй уровень классификации. Перечислим некоторые из них. Классические методы анализа хозяйственной деятельности и финансового анализа: цепных подстановок, арифметических разниц, балансовый, выделения изолированного влияния факторов, процентных чисел, дифференциальный, логарифмический, интегральный, простых и сложных процентов, дисконтирования.
Традиционные методы экономической статистики: средних и относительных величин, группировки, графический, индексный, элементарные методы рядов динамики.
Математика-статистические методы изучения связей: корреляционный анализ, регрессионный анализ, дисперсионный анализ, факторный анализ, метод главных компонент, ковариационный ана-лиз, метод объекто-периодов, кластерный анализ и другие методы.
Эконометрические методы: матричные методы, гармонический анализ, спектральный анализ, методы теории производственных функций, методы межотраслевого баланса.
Методы экономической кибернетики и оптимального программирования: методы системного анализа, методы машинной имитации, линейное программирование, нелинейное программирование, динамическое программирование, выпуклое программирование, методы распознавания образов, методы нечетких вычислений, нейросетевое моделирование и другие.
Методы исследования операций и теории принятия решений: метод теории графов, метод деревьев, метод бейсовского анализа, теория игр, теория массового обслуживания, методы сетевого планирования и управления.
Большая часть из перечисленных выше методов активно используются в работе департамента экономики и прогнозирования, экономических служб многих районов.
2.1. Математико-статистические методы многомерного сравнительного анализа
В последние годы заметно возрос интерес к методам многомерного сравнительного анализа. Их применяют и в «качественных» науках - в отраслевых экономиках (особенно в экономике сельского хозяйства, промышленности, торговле, в экономике предприятия) — и в науках «количественных» (статистике, эконометрии).
Свидетельством большого интереса к этой проблематике служат многочисленные публикации. Изучение всех этих публикаций (чаще всего это статьи) и выбор из их числа наиболее ценных - задача довольно трудная. Вместе с тем ощущается явная нехватка руководства, которое содержало бы доступное изложение материала, относящегося к этой области.
В данном разделе описаны процедуры, которые помогают выявлению закономерностей в статистических совокупностях, характеризуемых достаточно многочисленным набором признаков. Самое широкое применение при проведении данного рода исследований нашли методы таксономии и некоторые процедуры факторного анализа.
В деятельности исследователя большую роль играет проведение разного рода сравнительных исследований, заключающихся в сопоставления данных. Подобные сопоставления встречаются как в статистических и эконометрических исследованиях, так и в экономических исследованиях «традиционного» типа при выполнении анализа рынка, анализа деятельности предприятий и т.п. Как правило, такие исследования проводятся на основе модели с небольшим числом переменных, чаще всего с одной или двумя, что чрезмерно упрощает реальность. Большинство экономических явлений в действительности характеризуется множеством разнообразных признаков, число которых нередко достигает нескольких десятков. В таких случаях проведение исследований традиционными методами значительно усложняется или становится просто невозможным. Следовательно, появляется необходимость либо в приспособлении для экономических исследований тех методов, которые уже применяются в других научных дисциплинах, либо в разработке новых методов. К настоящему времени наиболее широко применяются при проведении сравнительного анализа таксономические методы и некоторые методы
факторного анализа.
Происхождение термина сравнительный многомерный анализ объясняется использованием как в таксономических методах, так и в факторном анализе понятия многомерный объект, под которым понимают либо статистическую единицу (часто называемую структурной единицей), определяемую набором значений признаков, либо признак, который задан его значениями на отдельных статистических единицах. Поэтому понятием многомерный сравнительный анализ в экономических исследованиях обозначается целый ряд разнородных методов, служащих для выявления закономерностей в статистических совокупностях, единицы которых описываются относительно многочисленным набором признаков. Применение этих методов, таким образом, расширяет возможности проведения разнообразных
сопоставлений на многомерных объектах. В таксономических методах сопоставления проводятся с помощью матрицы расстояний, а в факторном анализе — с помощью матрицы корреляций.
2.2. Таксономические методы
В настоящем разделе большее внимание уделено таксономическим методам. Их название происходит от двух греческих слов: таксис (что означает расположение, порядок) и номос (закон, правило, принцип). Таким образом, таксономия — это наука о правилах упорядочения и классификации. Первоначально это понятие употреблялось только для определения науки, занимающейся классификацией растений и животных. Сейчас понятия и методы таксономии находят применение для упорядочения и разбиения на группы объектов различной природы, а не только биологических. Ими стали пользоваться антропологи, затем географы, а в последнее время к таксономии все чаще прибегают представители различных экономических дисциплин.
Основным понятием, используемым в таксономических методах, является так называемое таксономическое расстояние. Это — расстояние между точками многомерного пространства, исчисляемое чаще всего по правилам аналитической геометрии. Размерность пространства определяется числом признаков, характеризующих единицы изучаемой совокупности. В двойственной же задаче, в которой признаки выступают в роли объектов исследования, размерность пространства определяется числом структурных единиц. Таким образом, таксономическое расстояние исчисляется между точками-единицами, либо точками-признаками, расположенными в многомерном пространстве. Исчисленные расстояния позволяют определить положение каждой точки относительно остальных точек и, следовательно, определить место этой точки во всей совокупности, что делает возможным их упорядочение и классификацию.
В зависимости от целей исследования таксономические методы можно разделить на три группы: методы упорядочения, методы разбиения, методы выбора репрезентантов групп.
Первая группа включает методы, упорядочивающие единицы изучаемой совокупности, причем здесь можно выделить два направления. В одном случае достигается линейное упорядочение, в другом - нелинейное.
Линейное упорядочение (например, методом Чекановского) заключается в проецировании точек многомерного пространства на прямую.
Вроцлавские математики разработали так называемый метод дендритов (именуемый также вроцлавской таксономией), при котором точки многомерного пространства проецируются на плоскость, чем достигается нелинейное упорядочение изучаемых элементов.
Вроцлавская таксономия находит все большее применение во многих экономических дисциплинах как в своем первоначальном
виде, так и в дальнейших модификациях.
Вторая группа методов имеет дело с задачами разбиения множества на группы однородных элементов. Среди них можно выделить метод Чекановского, приспособленный для проведения территориальных экономических исследований благодаря тому, что в нем учи-тывается информация о связях между всеми объектами (расположены ли они далеко или близко друг от друга). Другим широко используемым методом является так называемый метод шаров. Он менее трудоемок, нем другие методы, что составляет его несомненное достоинство.
Третья группа таксономических методов применяется с целью выбора репрезентантов групп. Она имеет большое значение, особенно при нахождении так называемых диагностических признаков, т.е. признаков, передающих самые существенные особенности весьма
многочисленного набора исходных признаков.
3. Факторный анализ
Другим целям служит факторный анализ. Его название происходит от введенного Ч. Спирмэном понятия общий фактор. Этот термин был впервые употреблен в психологии. Идею Спирмэна в дальнейшем развил Л.Л. Тэрстоун, который считается создателем многофакторного анализа.
Главная цель факторного анализа — установление общих закономерностей, определяющих сущность изучаемого явления. Материалом, на базе которого проводятся такие исследования, служат наблюдения над вариацией значений множества признаков, характеризующих данное явление. Непосредственное раскрытие сущностных закономерностей бывает весьма затруднено, а иногда и просто невозможно, если рассматриваемое множество признаков оказывается настолько велико, что избыток информации начинает мешать пониманию наиболее существенных взаимосвязей. Выявление закономерностей облегчается, если среди рассматриваемых признаков найдутся такие, которые сильно коррелированы между собой и поэтому мало отличаются друг от друга в отношении информации об исследуемом явлении. В таких случаях следует заменить группу сильно коррелированных признаков некой расчетной «синтетической» величиной (равнодействующей). Полученная величина после интерпретации (соответствующей области исследования) называется фактором и рассматривается как одна из закономерностей изучаемого явления.