Смекни!
smekni.com

Книга S.Gran A Course in Ocean Engineering. Глава Усталость (стр. 9 из 10)

Математическое ожидание E[x] размера начальной трещины

и среднеквадратическое отклонение

Часто используется экспоненциальное распределение, g=1. Однако, если предполагается, что на поверхности есть множество мелких дефектов, то доминирующая трещина будет определяться исходя из наибольшего дефекта. В этом случае, ожидается, что начальное распределение будет более островершинным, т.е. g больше единицы. Часто, для морских судов и прибрежных конструкций принимаются поверхностные дефекты порядка x0=0,1 мм.

Далее мы ограничимся случаями, где x и t объединены в одну переменную xi=xi(x,t) так, что значение xiв момент времени t=0 соответствует начальной глубине трещины. В таком случае, вероятность превышения Q(x,t) является функцией только от xi

Интегральную функцию распределения Pf(t) получают путем подстановки xi вместо x в (4.7.101). Выраженное через xi, уравнение непрерывности становится

со средней скоростью роста трещин

Мы используем скорость роста U в явном виде, как это дано в (4.7.89). Обычно, это функция от текущего размера трещины x, введенного через геометрическую функцию g(x).

Постоянная скорость роста. В самом простом случае, скорость роста трещины постоянна и она не зависит от размеров трещины. Мы можем записать

Функция вероятности для глубины трещины x будет равномерно сдвигаться вдоль оси x без изменения формы. Согласующаяся с начальным распределением (4.7.101), интегральная функция распределения по времени до разрушения будет

Это трехпараметрическое распределение Вейбулла. Математическое ожидание ресурса

а среднеквадратическое отклонение

В методе Палмгрена-Майнера для этого решения применяется линейный коэффициент использования h, т.к. предполагалось, что движение равномерное. Также, существуют особые области в трубных соединениях, где из-за геометрических особенностей рост трещин почти равномерный.

Линейный рост трещин. Мы можем рассмотреть особый случай, когда скорость роста трещины пропорциональна ее размеру, т.е.

Такое может быть, если геометрическая функция со штрихом g¢(x) в (4.7.84) постоянна и если параметр наклона m в da/dN кривой равен 2. В этом случае, переменную xi можно определить как

которая удовлетворяет (4.7.106). Подставленная в начальную функцию вероятности (4.7.101), она дает интегральную функцию распределения по времени до разрушения

Сравнение с (4.2.6) показывает, что теперь усталостный ресурс имеет двумерное экспоненциальное распределение. От характера распределения зависит наиболее вероятный, т.е. характеристический, ресурс tc

Согласно (4.2.16), математическое ожидание ресурса

и согласно (4.2.17), среднеквадратическое отклонение

Следовательно, среднеквадратическое отклонение относительно наиболее вероятного ресурса

Мы не учли возможность того, что исходный размер трещины может быть с самого начала больше критического значения xf.

Характеристическая величина xf/x0, соотношения между конечным размером трещины и начальными поверхностными дефектами, имеет порядок 100. Когда исходные глубины трещин распределены экспоненциально, т.е. g=1, это дает погрешность в оценке ресурса, т.е. несоответствие действительной скорости распространения, 28%.

Скорость роста пропорциональная xs. Модель для определения скорости роста трещин, которую можно увидеть во многих работах, имеет вид

Соотношение такого рода дает теоретическая формула (4.7.81). При m=3, получим классическое значение s=1,5. В этом случае, мы можем найти промежуточную постоянную движения

которая удовлетворяет уравнению (4.7.106). Объединенная с начальным распределением, интегральная функция распределения усталостных ресурсов станет

Это трехпараметрическое распределение Вейбулла, которое преобразовывается в (4.7.108), если s=0. Характеристическая для ресурса величина tc является вероятностью разрушения 1/e, т.е. это время, при котором экспонента в (4.7.120) равна 1. Эта величина будет

Среднеквадратическое отклонение найденного ресурса относительно этой характеристической величины будет

Следует отметить, что среднеквадратическое отклонение существует, только если g больше, чем указанное выше значение, т.е. если s меньше, чем определенная в (4.7.122) величина. В противном случае, среднеквадратическое отклонение становится бесконечно большим. Однако, в качестве меры погрешности в определении ресурса, можно использовать, например, межквартильный размах.

Список литературы для части 4.7

1. American Society for Metals, "Metals Handbook" Vol. 10: "Failure Analysis and Prevention. Fatigue Failures." Metals Park, Ohio 44073, 8th Edition, 1975.

2. A.Almar-Naess, editor, "Fatigue Handbook", Tapir, Trondheim, 1985.

3. Det norske Veritas, "Fatigue Strength Analysis for Mobile Offshore Units", Classification Note No.30.2. August 1984.

4. British Standards Institution BS5400, "Steel, Concrete and Composite Bridges. Part 10. Code of Practice for Fatigue." 1980.

5. Department of Energy, "Offshore Installations. Guidance on Design and Construction. New Fatigue Design Guidance for Steel Welded Joints in Offshore Structures." DoE, Issue N. August 1983.

6. Norges Standardiseringsforbund, "Prosjektering av staalkonstruksjoner. Beregning og dimensjonering." Norsk Standard NS 3472, 1.utg. 1975, 2.utg. 1984.

7. F.Matanzo, "Fatigue Testing of Wire Rope." MTB-Journal Vol.6 No.6.

8. S.Gran, Evaluation of High Cycle Fatigue in Welded Steel Connections. Det norske Veritas, Report No.76-339.

9. S.Gran, "Fatigue in Offshore Cranes". Norwegian Maritime Research, No.4 1983, 2-12.

10. Y.K.Lin, Probabilistic Theory of Structural Dynamics. Robert E.Krieger Publishing Company. Huntington, New York, 1976 p.99.

11. H.E.Boyer, editor, "Atlas of Fatigue Curves," American Society for Metals, Metals Park, Ohio 44073, 1986.

Postscript Equations to Article 4.7.

Section 4.7.1 - Fatigue Loading.

Equation (4.7.1):

f sub 1 (S) = g(a, h, X; S) = |h| over { GAMMA (a) X} ( S over X ) sup ah-1 e sup{-(S/X) sup h}

Equation (4.7.2):

a = 1 h = 2 X = 2 sqrt 2 sigma sub s

Equation (4.7.3):

a = 1 h = 1 X = S bar = sigma sub S

Equation (4.7.4):

f sub 2 (X) = g(b, j, B; X) = |j| over { GAMMA (b) B} ( X over B ) sup bj-1 e sup{-(X/B) sup j}

Equation (4.7.5):

f(S) = int f sub 1 (S) f sub 2 (X) dX

Equation (4.7.6):

M sub m = B sup m {GAMMA (a + m over h ) GAMMA (b + m over j )} over{GAMMA (a) GAMMA (b)}

Equation (4.7.7):

f (S) = g(d, k, D; S) = |k| over { GAMMA (d) D} ( S over D ) sup dk-1 e sup{-(S/D) sup k}

Equation (4.7.8):

a = b = d = 1

Section 4.7.2 - Fatigue Data.

Equation (4.7.9):

N sub f = N(S) = ( {S sub 1}over S ) sup m = A over{S sup m} roman where A = S sub 1 sup m

Section 4.7.3 - Closed-form Fatigue Life Formulae.

Equation (4.7.10):

eta = sum{n(S)}over{N(S)}

Equation (4.7.11):

eta = n int 1 over{N(S)} f(S) dS

Equation (4.7.12):

eta = n over{S sub 1 sup m} int from 0 to inf S sup m f(S) dS = n over{S sub 1 sup m} M sub m

Equation (4.7.13):

DELTA eta = n ( X over{S sub 1}) sup m {GAMMA (a + m/h)}over{GAMMA (a)}

Equation (4.7.14):

eta = n ( D over{S sub 1}) sup m {GAMMA (d + m/k)}over{GAMMA (d)}

Equation (4.7.15):

eta = n ( B over{S sub 1}) sup m {GAMMA (a + m/h)}over{GAMMA (a)} {GAMMA (b + m/j)}over{GAMMA (b)}

Equation (4.7.16):

GAMMA (1 + x) = x!

Equation (4.7.17):

N sub f = N(S) =

left { lpile{( {S sub 1}over S ) sup m S > S sub 0 above inf S < S sub 0}

Equation (4.7.18):

DELTA eta = n ( X over{S sub 1}) sup m {GAMMA (a + m over h ; ({S sub 0}over X ) sup h )} over{GAMMA (a)}

Equation (4.7.19):

eta = n ( D over{S sub 1}) sup m {GAMMA (d + m over k ; ({S sub 0}over D ) sup j )} over{GAMMA (d)}

Equation (4.7.20):

eta = sum n(C) over N(C)

Equation (4.7.21):

N sub f = N(S) = left { lpile{({S sub 1} over S ) sup m S > S sub 0 above ({S' sub 1}over S ) sup m' S < S sub 0}

Equation (4.7.22):

m' mark = m + 2

Equation (4.7.23):

N(S sub 0 ) lineup = 1 cdot 10 sup 7

Equation (4.7.24):

S sub 0 lineup = 10 sup{- 7 over m} S sub 1 = S' sub 1 10 sup{- 7 over m+2}

Equation (4.7.25):

S' sub 1 lineup = S sub 1 ( {S sub 1}over{S sub 0}) sup{- 2 over m+2} = S sub 0 ({S sub 1}over{S sub 0} ) sup{m over m+2} = S sub 1 10 sup{- 14 over m(m+2)}

Equation (4.7.26):

eta = n "{" ( D over{S sub 1}) sup m {GAMMA (d + m over k ; ({S sub 0}over D ) sup k )} over{GAMMA (d)} +

( D over{S' sub 1}) sup m+2 {gamma (d + m+2 over k ; ({S sub 0}over D ) sup k )} over{GAMMA (d)} "}"

Equation (4.7.27):

N sub f = N(S) = left { lpile{N sub 0 e sup{- S over B} above inf } for lpile{S &bsol;(>= S sub 0 above S &bsol;(<= S sub 0}

Equation (4.7.28):

eta = n over{N sub 0} int e sup tS f(S) dS = n over{N sub 0} PHI (-t) roman where t = -1/B

Equation (4.7.29):

eta = n over{N sub 0} d over{GAMMA (d) D sup dk} int from{S sub 0}to inf S sup dk-1 e sup{-( S over D ) sup k + S over B} dS

Equation (4.7.30):

eta = n over{N sub 0} B over{B - D} 1 over{GAMMA (d)} GAMMA (d; {B - D}over BD S sub 0 )

Equation (4.7.31):

eta = n over{N sub 0} B over{B - D} e sup{-{B - D}over BD S sub 0}

Equation (4.7.32):

eta = n over{N sub 0} 1 over sqrt pi e sup{{D sup 2}over{4B sup 2}} GAMMA &bsol;s(12(&bsol;s0 1 over 2 ; ( {S sub 0}over D - D over 2B ) sup 2 &bsol;s(12)&bsol;s0

Equation (4.7.33):

eta = n over{N sub 0} e sup{{D sup 2}over{4B sup 2}} &bsol;s(12"{"&bsol;s0 e sup{- 1 over 2 ( {sqrt 2 S sub 0}over D - D over{sqrt 2 B}) sup 2} + sqrt pi D over B [ 1 - PHI ({sqrt 2 S sub 0}over D - D over{sqrt 2 B} ) ] &bsol;s(12"}"&bsol;s0