Так Е. Кивимаа поделил силу резания на две части, одна из которых приложена к режущей кромке лезвия и производит вальцевание поверхности резания и перерезание или разделение волокон древесины, а другая – приложена к передней поверхности лезвия и производит сжатие срезаемого слоя древесины. Для единичной силы резания шириной 1 мм сила резания выражается формулой
Fx1 = Fс + Ка.
Если единичную силу резания поделить на соответствующее ей значение толщины срезаемого слоя а, то получится значение удельной силы резания, количественно равное удельной работе резания.
В работах А.Л. Бершадского [6, 7, 10] удельная работа резания древесины выражалась следующей формулой:
, (5)где К' – удельная работа резания при толщине срезаемого слоя 1 мм;
m – коэффициент, характеризующий интенсивность роста удельной работы резания.
Эта формула получена путем обработки экспериментальных данных в логарифмических осях координат. Она показывает, что удельная работа резания убывает с ростом толщины срезаемого слоя. Эта формула оказалась удобной для практических расчетов и широко использовалась до 60-х годов. Однако такая формула затрудняла определение радиальной составляющей полной силы резания.
Радиальная сила (сила отжима) определялась по формуле:
Fz = ±mFx, (6)
где m – коэффициент, зависимый от остроты режущей кромки лезвия и толщины срезаемого слоя [11, 12]. Значение m изменяется в пределах m = 0,1- 1,0.
Исследования по резанию древесины и древесных материалов в нашей стране ведут все высшие учебные заведения лесопромышленного профиля, а также отраслевые научно-исследовательские институты (ЦНИИМОД, г. Архангельск; ЦНИИМЭ, г. Химки Московской обл.; ВНИИДрев, г. Балабаново Калужской обл.; СибНИИЛП, г. Красноярск).
Резание древесины – сложный процесс. Его сложность обусловила появление разных направлений в развитии теории резания этого материала.
В итоге научных дискуссий по теории резания древесины, состоявшихся в Ленинграде (1952 г.) и в Москве (1953 г.), было установлено, что уже в то время наука о резании древесины развивалась по трем направлениям.
Первое направление применяет метод механико-математического анализа процесса резания. Это школа И.А. Тиме, М.А. Дешевого, С.А. Воскресенского. Ученые этой школы переносят методы науки о сопротивлении материалов на анализ действия сил и поведения стружки в процессе резания древесины.
Второе направление развивает физическую теорию резания древесины. Процесс резания рассматривается как физический. Изучаются прежде всего процессы упругого и остаточного деформирования древесины, трения на молекулярном уровне, влияние на эти процессы скорости резания. Это направление представлено школой В.Д. Кузнецова и Е.Г. Ивановского.
Третье направление использует физико-технологический метод, математически обобщающий экспериментальные данные процессов резания в эмпирические формулы, пригодные для практических расчетов. Формулы объединяют физические и технологические параметры. Это школа А.Л. Бершадского.
Между указанными тремя теориями резания нельзя провести четких границ. Они части одной теории, дополняющие и обогащающие друг друга, объединенные единством цели.
Научные труды основоположника науки о резании древесины И.А. Тиме дали возможность целой плеяде русских ученых (П.А. Афанасьеву, К.А. Зворыкину, А.Н. Челюскину, Я.Г. Усачеву, М.А. Дешевому, А.Л. Бершадскому, А.Э. Грубе, С.А. Воскресенскому, Е.Г. Ивановскому, А.Е. Золотареву, И.П. Лапину, Ф.М. Манжосу, В.С. Рыбалко и многим другим) создать отечественную российскую школу обработки древесины резанием. Эта школа занимает сейчас ведущее место в мире.
О взаимосвязи сил, действующих по контактным поверхностям лезвия. Изучая процесс резания древесины, в 1934 г. М.А. Дешевой высказал предположение о независимости действия сил по обе стороны от плоскости резания. В 1945 г. А.М. Розенберг в исследовании процесса фрезерования металлов, а в 1955 г. С.А. Воскресенский в теоретических исследованиях процесса резания древесины делают предположения, что процессы, происходящие по передней поверхности лезвия, не влияют на величину сил по задней поверхности.
Впервые гипотеза о независимости сил по задней поверхности от толщины срезаемого слоя была проверена Н.Н. Зоревым в 1952 г. при резании стали. Было показано, что при увеличении толщины срезаемого слоя от 0,05 мм до 0,55 мм силы резания на задней поверхности почти не изменяются. "Природа сил, – отмечает Н.Н. Зорев [13], – действующих по передней и задней поверхностям, различна и поэтому большинство факторов различно влияют на величину этих сил. Например, передний угол и толщина среза сильно влияют на силы, действующие на передней поверхности, но слабо влияют на силы, действующие на задней поверхности. Ширина контакта задней поверхности слабо влияет на силы, действующие на передней поверхности, но сильно влияет на силы, действующие на задней поверхности."
В 1953 г. М.Н. Ларин [14], изучая характер износа резцов при различных задних углах и толщинах срезаемых слоев, пришел к выводу, что оптимальное значение заднего угла связано с толщиной срезаемого слоя и определяется по формуле:
,где С – постоянная величина: С = 0,13 при обработке стали, чугуна, сплавов; С= 0,18 при обработке пластмасс;
аmax – толщина срезаемого слоя, мм;
К – коэффициент.
"Таким образом, – пишет М.Н. Ларин, – многочисленными опытами советских исследователей установлено, что главным фактором, влияющим на величину оптимального заднего угла, является толщина среза стружки."
В 1961 г., рассматривая вопрос о коэффициенте затупления, А.Л. Бершадский [15] излагает методику обработки экспериментальных данных Е. Кивимаа, В.П. Бухтиярова и приводит значения коэффициентов затупления по передней arп и задней arз поверхностям в зависимости от времени работы лезвия Т:
Т, ч | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
arп | 1,0 | 1,05 | 1,1 | 1,15 | 1,2 | 1,25 | 1,3 |
arз | 1,0 | 1,25 | 1,45 | 1,60 | 1,75 | 1,85 | 2,0 |
Затупление режущей кромки, оказывающее сильное влияние на работу задней поверхности, оказывается, влияет, хотя и незначительно, на работу передней поверхности.
Позднее А.Л. Бершадский отказался от результатов проведенных исследований, но факт существования такой зависимости остается.
В 1967 г., изучив влияние затупления лезвий на касательную силу резания при фрезеровании древесины, В.Г. Морозов [16] приводит следующие значения коэффициентов затупления по передней arп и задней arз поверхностям лезвия:
r, мкм | 5 | 10 | 15 | 20 | 25 | 30 | 35 |
arп | 1,0 | 1,04 | 1,08 | 1,13 | 1,20 | 1,28 | 1,40 |
arз | 1,0 | 1,25 | 1,70 | 2,00 | 2,50 | 3,30 | 4,50 |
В 1967 г., изучая процесс фрезерования лигно-углеводных древесных пластиков, автором читаемой Вами работы [17], была предложена следующая формула для расчета единичной касательной силы резания, Н:
,где использованы поправочные коэффициенты по задней и передней поверхностям лезвия:
avз и avп – на скорость главного движения;
aНз и aНп – на глубину фрезерования;
arз и arп – на затупление режущей кромки;
aaз и aaп – на величину заднего угла;
adз и adп – на угол резания.
Поправочные коэффициенты на угол резания оказывают основное влияние на силы по передней поверхности лезвия, но они оказывают, хотя и меньшее влияние, на силы по задней поверхности. Значения коэффициентов приведены ниже.
Угол резания d, град | 50 | 55 | 60 | 65 | 70 |
adз | 1 | 1,01 | 1,03 | 1,08 | 1,15 |
adп | 1 | 1,16 | 1,29 | 1,38 | 1,45 |
Поправочные коэффициенты на задний угол и затупление режущих кромок лезвий оказывает главное влияние на силы, действующие по задней поверхности лезвия, но они влияют и на силы по передней поверхности. Значения коэффициентов приведены ниже.
Задний угол a, град | 8 | 9 | 10 | 11 | 12 |
aaз | 1,09 | 1,03 | 1,0 | 0,94 | 0,91 |
aaп | 0,89 | 0,96 | 1,0 | 1,01 | 1,02 |
Радиус закругления r, мкм | 15 | 25 | 35 | 45 | 55 |
arз | 1 | 1,76 | 2,27 | 2,65 | 2,96 |
arп | 1 | 0,73 | 0,62 | 0,54 | 0,49 |
Таким образом, результаты опытов многих исследователей подтверждают взаимосвязь сил, действующих по передней и задней поверхностям лезвия.
Развитие теории резания древесины в современных условиях. Резание древесины – сложный процесс. При изучении такой процесс в современных условиях принято рассматривать как технологическую систему (ТС), состоящую из нескольких взаимосвязанных и относительно неделимых частей, образующих единое целое. Технологическая система "процесс резания" состоит из четырех частей, называемых подсистемами (рис. 2): заготовки, условий резания, станка, режущего инструмента.