в таблицу 6.1.
Выбор геометрии охлаждающего тракта.
На всем протяжении камеры проходят фрезеровки.
а = 1,3-3 мм., - ширина канала,
б = 0,5-2 мм., - ширина ребра,
δохл = 2-4 мм., - высота ребра,
δст =0,5-3 мм., - толщина стенки.
7. Расчет смесеобразования.
Компоненты топлива:
· Жидкий кислород;
· Подогретый НДМГ.
Смесеобразование в камере сгорания осуществляется двухкомпонентными форсунками и центробежными жидкостными форсунками горючего для охлаждения паяного шва и огневого днища. Применение двухкомпонентных форсунок обеспечивает смешение компонентов в одной фазе вблизи плоскости форсунок в КС, что приводит к более интенсивному протеканию процессов горения и уменьшению объема КС. Кроме того пропускная способность головки с двухкомпонентными форсунками существенно выше. Правда при интенсивном протекании процессов сгорания вблизи форсунок огневое днище головки и особенно узлы пайки форсунок в днищах будут работать при повышенных температурах, поэтому часто приходится организовывать вокруг каждой форсунки жидкостную завесу. Однако улучшения смесеобразования за счет двухкомпонентных форсунок дает более существенный выигрыш в повышение надежности работы всей КС.
Определение количества форсунок на головке камеры.
Расчеты проведены согласно указаниям источников [], [].
Расположение форсунок на головке - концентрическое, шаг а между центрами для двухкомпонентных форсунок может быть в пределах а = 18…50 мм: а = 24 мм. Для нормального закрепления форсунки на днище вблизи стенки камеры необходимо, чтобы между стенкой камеры и центром корпуса форсунки было расстояние, равное 5…10 мм.
Если эффективную площадь головки, занятую форсунками, поделить на площадь, занятую одной форсункой на головке, то получим количество форсунок, уместившихся на головке:
,Эффективная площадь головки Fк.эф.=πR2к.эф.
Rк.эф = Rк-а/2 = 127 - 24/2 = 115 мм,
Rк - радиус камеры сгорания, а - шаг между форсунками.
Для концентрического расположения форсунок найдем количество окружностей, умещающихся на поверхности головки. Примем расстояние между окружностей равным шагу между форсунками, а на окружностях форсунки расположены на расстоянии шага, измеренного по хорде окружности.
Количество окружностей
;Очевидно, на первой окружности число форсунок будет
На второй окружности число форсунок
На третьей окружности
На четвертой окружности
Общее число форсунок с центральной составит
n = n1 + n2 + n3 = 1+6 + 12 + 18 +24 = 61.
Шаг между форсунками по мере удаления от центра чуть-чуть возрастает.
Создание пристеночного слоя в камере.
Для обеспечения надежного охлаждения горячих стенок камеры необходимо создать вблизи стенок слой продуктов сгорания с пониженной температурой. Это достигается постановкой дополнительный струйных форсунок горючего по периферии головки. При этом в пристеночном слое создается местное соотношение компонентов меньше, чем расчетное в ядре.
Необходимо обеспечить пристеночный слой наименьшим количеством топлива, чтобы доля удельного импульса в пристеночном слое, как неоптимального, была минимальной в общем удельном импульсе камеры.
Для более равномерного распределения компонентов в пристеночном слое необходимо ставить увеличенное число форсунок. При этом пристеночный слой получается устойчивым по длине камеры и сохраняется газовая завеса с пониженной температурой по всей длине камеры.
Однокомпонентная центробежная форсунка предназначена для охлаждения паяного шва и его расход от основного горючего составит 20%. (2,8 кг/сек) Количество форсунок - 30. Плотность НДМГ= 786
.1. Выбираем угол распыла для форсунки горючего 2α = 40˚.
2. Перепад давления на форсунке Г: ΔРф.гор.= 800000 Па
3. По графику (рис.5.6., [4]) находим Аг = 1; μф.г.=0,44; φг = 0,66.
4. Определяем площадь сопла форсунки горючего
;dcф.г.=
2,76 мм rc=1,38 мм5)Примем число входных отверстий i=4 .
Rвх/ rc= 2,5; следовательно R вх= 2,5rc =3,45 мм
Находим
6) Определяем число Рейнольдса Reвх и выбираем коэффициент трения
550186,9 -1,72 0,01927) Определяем эквивалентную геометрическую характеристику.
Аэ1=
0,986Геометрическая характеристика с учетом вязкости отличается от расчетной идеальной менее чем на 5%, то найденные размеры форсунки принимаем действительными.
Окончательные размеры однокомпонентной центробежной форсунки горючего для пристеночного слоя:
Размеры | Мм |
R k | 3,84 |
h форсун | 8,00 |
r c | 1,28 |
r нар сопл | 3,33 |
δ стенки | 1,20 |
r вх | 1,51 |
d вх | 3,02 |
R вх | 2,56 |
Расчет двухкомпонентной форсунки.
Рассчитаем сначала форсунку окислителя, находящуюся внутри форсунки окислителя.
1. Выбираем угол распыла для форсунки горючего 2α = 100˚.
2. Перепад давления на форсунке Г: ΔРф.гор.= 1500000 Па
3. По графику (рис.5.6., [4]) находим Аг = 4; μф.г.=0,19; φг = 0,38.
4. Определяем площадь сопла форсунки окислителя
;dcф.ок.=
6,98 мм rcг=3,49 мм.Принимая толщину стенки
0,95мм, получаем наружный радиус сопла rнг=4,44 мм5)Примем число входных отверстий i=4 .
Rвх/ rc= 2,25; следовательно R вх= 2,25rc =7,85 мм
Находим
) Определяем число Рейнольдса Reвх и выбираем коэффициент трения
992161,9 -1,75 0,0187) Определяем эквивалентную геометрическую характеристику.
Аэ1=
3,83Геометрическая характеристика с учетом вязкости отличается от расчетной идеальной менее чем на 5%, то найденные размеры форсунки принимаем действительными.
Размеры | мм |
R k | 10,41 |
h форсун | 8,72 |
r c | 4,36 |
r нар сопл | 5,31 |
δ стенки | 0,95 |
r вх | 1,68 |
d вх | 3,37 |
R вх | 8,72 |
Теперь рассчитаем форсунку Горючего.
1. Выбираем угол распыла для форсунки горючего 2α = 115˚.
2. Перепад давления на форсунке Г: ΔРф.гор.= 800000 Па
3. По графику (рис.5.6., [4]) находим Аг = 6; μф.г.=0,13; φг = 0,3.
4. Определяем площадь сопла форсунки Окислителя
;5. Проверяем условие rвг > rнок:
ммТ.к. 4,76>4,44 , то форсунка окислителя будет работать с расчетным коэффициентом расхода.
6. Примем число входных отверстий i=4 .
Rвх/ rc= 1,85; следовательно R вх= 1,85rc =10,52 мм
Находим
7. Определяем число Рейнольдса Reвх и выбираем коэффициент трения