Химические топлива в соответствии с их агрегатным состоянием могут быть жидкими, твердыми и газообразными. Различает также топлива, соответствующие различным комбинациям названных состояний: твердожидкие (гибридные), газожидкие, псевдожидкие, гелеобразные и др.
Топлива для тепловых двигателей должны обладать определенными физико-химическими, эксплуатационными, экономическими и экологическими показателями, обеспечивающими эффективную и надежную с заданным ресурсом работу двигателей в различных климатических, высотных и других условиях.
К эксплуатационным относят свойства топлив, определяющие надежность и экономичность эксплуатации двигателя. Такими свойствами являются детонационная стойкость (октановое тело) или склонность к воспламенению (цетановое число) углеводородных горючих для поршневых ДВС, температурные и концентрационные пределы воспламенения, пределы устойчивого горения, температура самовоспламенения, время задержки воспламенения или самовоспламенения, а также такие свойства, как испаряемость, прокачиваемость, , склонность к образованию отложений, коррозионную активность, охлаждающие свойства, совместимость с конструкционными материалами.
По своему назначению ЖРТ подразделяют на основные, пусковые и вспомогательные. Основными являются топлива, создающие всю или основную долю тяги двигательной установки. Пусковое топливо используют в начальный период запуска двигателя для воспламенения несамо-воспламеняющихся при контакте основных компонентов. На продуктах сгорания или разложения вспомогательного топлива могут работать турбины, рулевые сопла и другие агрегаты, не создающее непосредственно основной доли тяги двигателя.
По числу основных компонентов различают одно-, двух- и трехкомпонентные топлива. Современные ЖРД наиболее широко используют двухкомпонентныс жидкие топлива. Такое топливо сравнительно безопасно в эксплуатации, допускает широкий выбор компонентов. К числу трехкомпонентных топлив можно отнести топлива, состоящие из окислителя и горючего, обеспечивающих высокий уровень выделения тепла, и третьего компонента, продукты нагрева или разложения которого обладают малой молекулярной массой и, следовательно, большой работоспособностью и удельным импульсом. В качестве третьего компонента может быть водород, метан и другие легкие вещества. Исследуемые трехкомпонентные топлива в большинстве своем—топлива металлосодержащие, представляющие собой окислитель и горючее, в объеме которого равномерно распределены твердые частицы металла.
Двухкомпонентные топлива можно классифицировать по родственным окислителям, поскольку именно окислитель, содержание которого в различных тонливах составляет 75 95% (по массе), определяет особенности топливной композиции. Различают, в частности, кислородные, азотно-кислотные, азоттетроксидные, перекись-водородные, хлорные и фторные топлива.
В зависимости от реакционной способности окислителя и горючего при их непосредственном контакте топлива разделяют на самовоспламеняющиеся и несамовоспламеняющисся. Самовоспламеняющиеся компоненты топлива во всем диапазоне эксплуатационных температур и давлений реагируют при контакте в жидкой фазе с выделением тепла, достаточного для воспламенения топливной смеси. Воспламенение несамовоспламеняющихся в обычных условиях топливных пар можно обеспечить каталитическим воздействием, введением в один из компонентов активизирующих присадок или подводом тепла от внешнего источника.
По интервалу температур сохранения жидкого состояния топлива или их компоненты подразделяют на высококипящие и низкокипящие. Высококипящие компоненты топлива в условиях эксплуатации
имеют температуру кипения выше 298 К и хранятся в обычных условиях без потерь на испарение. Низкокипящие компоненты топлива при стандартном давлении имеют температуру кипения ниже 298 К и находится в газообразном состоянии. Некоторые компоненты (например, аммиак NHg) можно эксплуатировать как высококипящие при поддержании определенного (сравнительно небольшого) избыточного давления в баке. Среди низкокипящих компонентов выделяют группу так называемых криогенных компонентов топлив, имеющих температуру кипения ниже 120 К (-153°С). Криогенный компонент нельзя хранить в жидком состоянии без принятия специальных мер его тепловой изоляции. К криогенным компонентам относятся сжиженные газы: кислород, водород, фтор, метан и др. Для уменьшения потерь на испарение и увеличение плотности возможно применение криогенного компонента в шугообразном состоянии, т.е. в виде подвижной грубодисперсной двухфазной смеси твердой и жидкой фаз этого компонента.
По физической и химической стойкости в течение длительного времени различают топлива длительного хранения или стабильные, и топлива кратковременного хранения. Компоненты стабильных топлив имеют при максимальной температуре в условиях эксплуатации или хранения давление насыщенного пара ниже допустимого по условиям прочности баков, обладают стабильностью физико-химических свойств в течение заданного времени и допускают хранение в баках ракеты или других емкостях при эксплуатационных температурах и давлениях без существенных потерь.
Задание.
Однокамерный ЖРД
Начальная масса m0 = 13 000 кг
Конечная масса m1= 1 300 кг
Тяговооруженность b0 = 1,1
Давление в КС poc = 8,8 МПа
Геометрическая степень расширения сопла
= 600=
Топливо:
О2+ ……. Стабильное горючее (НДМГ).
3. Расчет размеров камеры и действительных параметров двигателя.
Расчет геометрии камеры ЖРД
ТОПЛИВО: О2ж+ НДМГ
Тяга камеры 140.000 кН
Давление на входе в сопло 8.80000 МПа
Удельный импульс 3518.0514 м/с
Расходный комплекс 1729.9965 м/с
Массовые расходы:
окислителя 25.739801 кг/с
горючего 14.291759 кг/с
Параметры камеры сгорания:
а) Общие:
Коэффициент камеры сгорания 0.9800000
Относительная расходонапряженность 1.0000000 с/м
Время пребывания 0.002000 с
Относительная площадь поперечного сечения 5.7803584
Радиус 0.1273693 м
Длина 0.2004792 м
Объем 0.0049648 м3
Радиус скругления R1 0.1018954 м
Радиус скругления R2 0.0794655 м
б) В ядре потока:
Коэффициент избытка окислителя 0.9500000
Идеальный удельный импульс 3678.0345 м/с
Идеальный расходный комплекс 1772.2600 м/с
Идеальная температура 3863.0800 К
Молекулярная масса 25.337700 г/моль
Массовые расходы:
окислителя 23.841951 кг/с
горючего 11.752583 кг/с
в) В пристеночном слое:
Коэффициент избытка окислителя 0.15000000
Относительная доля горючего 0.2000000
Идеальный удельный импульс 2782.8400 м/с
Идеальный расходный комплекс 1400.1200 м/с
Массовые расходы:
окислителя 1.6978500 кг/с
горючего 2.8391759 кг/с
Параметры сопла:
Радиус скругления R3 0.0264885 м
Радиус минимального сечения 0.0529770 м
Половина угла раствора конического участка
сужающейся части сопла 7.0000000 рад
Коэффициенты потерь удельного импульса на
трение 0.0198067
рассеяние 0.0082720
Таблица 1
Координаты точек сопряжения контура сужающейся части сопла
-----------------------------
Точка¦ X [мм] ¦ Y [мм] ¦
----+------------+------------+
A ¦ 232.178 ¦ 127.369 ¦
B ¦ 299.122 ¦ 102.293 ¦
C ¦ 333.271 ¦ 72.533 ¦
D ¦ 385.479 ¦ 52.977 ¦
Таблица 2
Координаты контура расширяющейся части сопла
-------------------------------------------+
NN ¦ X [мм] ¦ Y [мм] ¦ Бета [рад] ¦
----+------------+------------+------------¦
1 ¦ 385.479 ¦ 52.977 ¦ 0.000000 ¦
2 ¦ 400.803 ¦ 57.860 ¦ 0.616910 ¦
3 ¦ 450.446 ¦ 90.763 ¦ 0.555199 ¦
4 ¦ 500.089 ¦ 119.762 ¦ 0.503345 ¦
5 ¦ 549.731 ¦ 145.652 ¦ 0.459031 ¦
6 ¦ 599.374 ¦ 168.990 ¦ 0.420636 ¦
7 ¦ 649.017 ¦ 190.183 ¦ 0.386983 ¦
8 ¦ 698.659 ¦ 209.542 ¦ 0.357195 ¦
9 ¦ 748.302 ¦ 227.308 ¦ 0.330604 ¦
10 ¦ 797.945 ¦ 243.674 ¦ 0.306690 ¦
11 ¦ 847.587 ¦ 258.797 ¦ 0.285045 ¦
12 ¦ 897.230 ¦ 272.807 ¦ 0.265340 ¦
13 ¦ 946.873 ¦ 285.811 ¦ 0.247308 ¦
14 ¦ 996.515 ¦ 297.902 ¦ 0.230731 ¦
15 ¦ 1046.158 ¦ 309.159 ¦ 0.215427 ¦
16 ¦ 1095.800 ¦ 319.649 ¦ 0.201247 ¦
17 ¦ 1145.443 ¦ 329.432 ¦ 0.188061 ¦
18 ¦ 1195.086 ¦ 338.560 ¦ 0.175761 ¦
19 ¦ 1244.728 ¦ 347.079 ¦ 0.164255 ¦
20 ¦ 1294.371 ¦ 355.030 ¦ 0.153462 ¦
21 ¦ 1344.014 ¦ 362.448 ¦ 0.143314 ¦
22 ¦ 1393.656 ¦ 369.367 ¦ 0.133749 ¦
-------------------------------------------+
6. Расчет охлаждения камеры двигателя.
Охлаждение камеры, работающего на компонентах: жидкий кислород + НДМГ выполняется согласно пособия для курсового и дипломного проектирования ЖРД [ ].
Охлаждение осуществляется проточным горючим (НДМГ) , далее охладителем.
.Диаметр минимального сечения равен 106 мм, диаметр выходного сечения сопла 697 мм. Давление заторможенного потока в КС Рос=8,8 МПа. Коэф-т избытка окислителя в пристеночном слое
ядре потока . Задаемся температурой охладителя на входе в тракт Твх.охл.=300 К.Выбираем в качестве материала стенки сплав БрХ08 и задаемся распределением температуры стенки по длине камеры. Распределение по длине выбираем линейное. В сверхзуковом сопле распределение температуры задаем двумя линейными зависимостями. Значения Тст.г. равны: в минимальном сечении 680 К, на срезе сопла 450 К, В камере сгорания 580 К.
Выбираем 7 расчетных сечений по тракту. Массовый расход охладителя выбираем на первом участке;
на остальных участках все горючее проходит через охлаждающий тракт.Для удобства полученные значения занесены