Смекни!
smekni.com

Гирокомпас Вега (стр. 4 из 6)

Одна из причин, затрудняющих реализацию найденного усло­вия, заключается в том, что для получения больших периодов к гироскопу должны прикладываться весьма малые управляющие моменты, величины которых меньше или соизмеримы с возникаю­щими моментами, имеющими место из-за статических ошибок следящих систем и нелинейности их звеньев.

В гирокомпасе с электромагнитным управлением использован более простой способ устранения баллистических девиаций. Для этого маятник индикатора горизонта сильно задемпфирован, а углы его отклонения от равновесного положения ограничены специальными упорами до относительно малой величины. Кроме того, чтобы снизить скорость баллистического перемещения гиро­скопа за время действия ускорения, период незатухающих коле­баний в рабочем режиме гирокомпаса выбирается большим — до 120—180 мин.

Возможен еще один простой и, по-видимому, более эффектив­ный способ устранения баллистических девиаций.

Если в индикаторе горизонта предусмотреть устройство, кото­рое автоматически отключало бы сигнал индикатора горизонта от схемы управления гироскопом, когда маятник под действием ус­корения достигает одного из упоров, то гироскоп вместо прецессирования с малой скоростью во время действия ускорения стано­вится свободным. Можно ожидать, что в этом случае отклонение гироскопа за время маневрирования будет меньшим, чем при первом способе компенсации. Следует заметить, что в обоих случа­ях при маневрировании корректирующие моменты остаются при­ложенными к гироскопу.

Эффективным способом устранения баллистических девиаций для гирокомпасов с электромагнитным управлением является способ компенсации силы инерции, воздействующей на маятник индикатора горизонта при наличии линейных ускорений.

Выражение полной силы, которая должна быть приложена к маятнику индикатора горизонта для компенсации баллистиче­ских девиаций гирокомпаса, создаваемых изменением скорости и курса, можно записать в виде

F = mм[( dV /dt) cosK + V(dK /dt)sink] , (1. 18)

где F -сила;

mммасса маятника;

K –курс;

V –скорость судна.

В качестве устройства для компенсации силы инерции, действующей на маятник, в индикаторе горизонта можно установить электромагнитный датчик момента, на который подается сигнал,. пропорциональный силе F.

Можно представить схему электромеханического прибора, решающего зависимость (1.18) и вырабатывающего нужный сигнал по автоматически вводимым значениям скорости и курса.

Чтобы не усложнять конструкцию индикатора горизонта, мож­но полученный сигнал коррекции суммировать в противофазе с сигналом, снимаемым с индикатора горизонта, предварительно» пропустив сигнал коррекции через фильтр с постоянной времени,. равной постоянной времени индикатора горизонта. Такое реше­ние наиболее целесообразно для описываемой схемы.

Приведенный способ компенсации баллистических девиаций предпочтительнее, чем настройка незатухающих колебаний гиро­компаса на период невозмущаемости по следующим соображе­ниям.

Теоретически такую коррекцию можно осуществить для лю­бого типа маневрирования судна независимо от скорости. При этом период незатухающих колебаний может быть выбран в прин­ципе любым, и, кроме того, нет необходимости менять парамет­ры гирокомпаса в зависимости от широты. Описанный способ компенсации позволяет полностью компенсировать баллистиче­ские девиации, в том числе и девиацию затухания без выключе­ния демпфирования на время маневра.

Интеркардинальная девиация. При движении судна в услови­ях качки следящая сфера гирокомпаса раскачивается вокруг-своей оси подвеса в такт с качкой под действием составляющей ускорения в плоскости Е—W.

Составляющая ускорения в плоскости N—S, воздействующая на маятник следящей сферы, меняя свое направление синхронно-с качкой, создает вертикальный момент, аналогично тому как это происходит у обычных маятниковых компасов, но в отличие от них в гирокомпасе с электромагнитным управлением этот мо­мент сам по себе не вызывает интеркардинальной девиации.

Инерционные моменты, действующие на следящую сферу во время качки, приводят лишь к дополнительным динамическим нагрузкам на двигатели азимутальной и горизонтальной следящих систем, но не дают существенных ошибок в показаниях гироком­паса.

Основная причина, определяющая появление интеркардиналь­ной девиации у гирокомпаса с косвенным управлением, заключа­ется в том, что составляющая ускорения в плоскости N—S дейст­вует и на маятник индикатора горизонта. Она вызывает появле­ние сигнала, пропорционального ускорению и меняющего знак в такт с качкой. Этот сигнал поступает на двигатели, которые при­кладывают к гироскопу через торсионы знакопеременные момен­ты. Поскольку одновременно происходит раскачивание следящей сферы, оси двигателей рассогласовываются с осями соответствую­щих торсионов на угол, примерно равный амплитуде качки. В ре­зультате, когда сигнал от индикатора горизонта поступает на двигатели, моменты, прикладываемые к гироскопу торсионами, создают две составляющие — горизонтальную и вертикальную.

Так как горизонтальные торсионы имеют жесткость, во много раз большую, чем вертикальные, то вертикальная составляющая моментов от горизонтальных торсионов по абсолютной величине значительно превосходит остальные вертикальные моменты. Она и образует постоянный вертикальный момент, вызывающий ин-геркардинальную девиацию гирокомпаса па качке. Как видно, ме­ханика появления интеркардинальной девиации у гирокомпасов с электромагнитным управлением иная, чем у обычных маятнико­вых гирокомпасов, но схема образования постоянного вертикально­го момента при качке по существу одинакова.

Величина интеркардинальной девиации, закон ее изменения и зависимость от параметров гирокомпаса и качки для гирокомпаса с электромагнитным управлением в принципе остаются такими же, как и для одногироскопных маятниковых компасов.

Из известных способов компенсации интеркардинальной де­виации для гирокомпаса с электромагнитным управлением наи­более рациональным оказалось применение индикатора горизонта с сильно демпфированным маятником.

Введение в чувствительный маятниковый элемент вязкого тре­ния позволяет осуществить сдвиг по фазе, близкий к 90°, между действующим ускорением и моментом, прикладываемым к гиро­скопу, в результате чего эффект влияния качки на гирокомпас сводится к минимуму.

Уравнение движения такого индикатора горизонта при воздей­ствии на него горизонтального ускорения для малых углов можно .записать в виде

тмl2 q”+c q’+mмg lq= mм l a(1. 19)

гдеmм — массы маятника;

l — длина маятника;

q — угол отклонения маятника от вертикали;

с — коэффициент демпфирования;

а — горизонтальное линейное ускорение качки. Передаточную функцию индикатора горизонта, движение ко­торого описывается уравнением (1.19), можно представить выра­жением

W(p)= q (p)/a (p)=1 / Tм2 p2 +t p + 1 , (1. 20)

где Tм=(l / g); t = c/ mм gl —постоянные времени индикатора горизонта.

Практически величина Tм во много раз меньше периода качки. Поэтому введя в индикатор горизонта сильное демпфирование, правомерно пренебречь членом передаточной функции, содержа­щим р2. Тогда коэффициент ослабления амплитуды колебаний маятника по сравнению с амплитудой колебаний динамической вертикали будет приближенно определяться формулой

k =1 /( t2 w2 +1)1/ 2(1. 21)

Например, для индикатора горизонта с постоянной времени t=60 сек при качке с частотой (w= 1,2'/сек) ослабление выход­ного сигнала, снимаемого с индикатора горизонта, будет около 72. Если учесть еще и сдвиг фазы между колебаниями маятника и действующим ускорением, то уменьшение выходного сигнала, а следовательно, и интеркардинальной девиации гирокомпаса ока­жется более значительным.

Влияние индикатора горизонта с большой постоянной времени на собственные колебания гирокомпаса очень мало, поскольку постоянная времени составляет менее 1 % от величины периода колебаний гирокомпаса.

Поведение гирокомпаса с электромагнитным управлением на качке отличается от обычных маятниковых компасов одной суще­ственной особенностью. В этом гирокомпасе, помимо постоянной составляющей по вертикальной оси от моментов, вызванных сиг­налами индикатора горизонта, при качке появляется постоянная составляющая на ту же ось от знакопеременных моментов, накла­дываемых на гиросферу горизонтальными торсионами вследст­вие динамических ошибок следящих систем. Эта погрешность, имеющая четвертной характер, зависит от жесткости горизон­тальных торсионов и при больших динамических ошибках ее вели­чина может достигнуть существенного значения.

Другая особенность заключается в характере карданной ошиб­ки гирокомпаса. Эта ошибка вызвана тем, что в рассматриваемой конструкции одногироскопного курсоуказателя карданов подвес ЧЭ обеспечивает снятие отсчета курса в плоскости палубы, а не в плоскости горизонта.

Величина карданной ошибки определяется формулой

DK = К. - arctg [tg (Кг cosq /siny) - sinq tgy ] ,(1. 22)

где Кг — курс в горизонтальной плоскости;

q — угол крена (бортовой качки);

y — угол дифферента (килевой качки).

Карданная ошибка при следовании судна курсами 0, 90, 180 и 270° равна нулю и достигает максимума на промежуточных курсах 45, 135, 225 и 315°. Несмотря на то, что даже при симмет­ричной качке возникает постоянная карданная ошибка, практи­чески при использовании курсоуказателя для целей судовождения ею можно пренебречь. При правильной бортовой качке с амплиту­дой в 10° и следовании промежуточными курсами средняя вели­чина карданной ошибки не превышает 0°,3.