Смекни!
smekni.com

«Биокомпьютеры» (стр. 3 из 6)

Для симуляции функционирования такой колонии британскими учеными была создана сеть из трех тыс. узлов. Основой самоорганизации стало присвоение различных приоритетов рассылаемым по сети пакетам данных. Например, высший приоритет получили «информационные» пакеты, доносящие послания от одного узла к другому (кроме них в системе рассылаются еще «управляющие», «конфигурирующие» и прочие пакеты), поэтому ими занимаются устройства, имеющие в данный момент наилучшие связи с максимальным числом элементов сети.

В British Telecom полагают, что воплощение экспериментальной концепции в реальных продуктах можно ожидать уже через пять-шесть лет.

Еще одна любопытная разработка была представлена на конференции бельгийскими исследователями под руководством профессора Марко Дориго (Marco Dorigo). Они продемонстрировали, что программы, имитирующие стратегию поведения муравьиного сообщества, могут успешно управлять работой сложных компьютерных сетей.

Рыская в поисках корма, муравьи-разведчики оставляют за собой меченую феромонами дорожку. При этом зачастую к одному источнику пищи прокладывается сразу несколько троп, но разведчик, открывший самую короткую тропинку, возвращается быстрее и уводит за собой соплеменников. Выделяемые ими феромоны делают

тропку более пахучей, чем остальные - в результате самая выгодная тропа быстро становится самой популярной. Учёные взяли эту тактику на вооружение: созданные ими программные агенты случайным образом «прозванивают» каналы связи между различными узлами сети и метят «тропинки» цифровыми «феромонами», на основании чего определяют оптимальный маршрут для передачи пакетов данных из одной точки в другую.

Практические испытания проводились в сетях Национального научного фонда США и японской корпорации NTT. Синтетические «муравьи» должны были, ничего не зная о конфигурации сети, отыскать кратчайшую дорогу от одного узла к другому. Быстро исследовав сеть, агенты определили её строение и вскоре уже могли «подсказать» любому информационному пакету к какому следующему узлу ему нужно направиться, чтобы достичь своей цели быстрее. Иначе говоря, был реализован механизм высококачественного интеллектуального роутинга, причем при возникновении различных «заторов» в сети «искусственные муравьи» реконфигурировали схему роутинга быстрее, чем традиционные решения.

Как считают авторы, их разработка может использоваться и для выполнения других неординарных задач, например динамической организации снабжения товаром в сложной торговой сети.

Биоалгоритмика

Эта заметка посвящена разделу биоинформатики, который можно назвать «биоалгоритмикой», - алгоритмам анализа первичных структур (последовательностей) биополимеров. Биоалгоритмика находится на стыке прикладной теории алгоритмов и теоретической молекулярной биологии и, подобно другим разделам биоинформатики, бурно развивалась в течение 70-х - 90-х годов XX века1.

Алгоритмы анализа символьных последовательностей и связанные с ними алгоритмы сортировки и алгоритмы на графах активно изучались и разрабатывались, начиная со второй половины 50-х годов. Алгоритмический бум 60-х - 70-х годов был связан как с разработкой теоретических моделей вычислений (конечные автоматы и их варианты с различными видами памяти), так и с появлением компьютеров и, следовательно, реальной потребностью в обработке значительных (по тем временам) объемов данных. Своеобразными итогами этого периода стали многотомное «Искусство программирования» Д. Кнута (1968-1973) и «Построение и анализ вычислительных алгоритмов» А. Ахо, Дж. Хопкрофта и Дж. Ульмана (1976). Анализ достижений этого замечательного этапа в развитии теории алгоритмов есть также в книге: В. А. Успенский, А. Л. Семенов. Теория алгоритмов: основные открытия и приложения. - М.: Наука, 1987.

Таким образом, к моменту создания первых баз данных последовательностей ДНК и белков - началу 80-х годов - алгоритмический аппарат был, в значительной степени, готов. При этом специалисты в области алгоритмов рассматривали биологические приложения в одном ряду с техническими, одни и те же алгоритмы применялись, например, для сравнения («выравнивания») биологических последовательностей и для поиска сбоев при хранении файлов. Характерно название первого сборника работ по биоалгоритмике - «Time Warps, String Edits, and Macromolecules: The Theory and Practice of Sequence Comparison» (Sankoff, D and Kruskal, JB, eds, 1983).

Впрочем, довольно скоро выяснилось, что анализ биологических последовательностей имеет свою специфику - прежде всего с точки зрения постановок задач. Вот, например, задача о распознавании «вторичной» структуры РНК. Она очень важна для молекулярной биологии и впервые была рассмотрена еще в конце 70-х годов. Молекула рибонуклеиновой кислоты (РНК) - однонитевой полимер, состоящий из четырех видов мономеров-нуклеотидов (аденин, гуанин, урацил, цитозин). А-У и, соответственно, Г-Ц могут образовывать водородные связи, стабилизирующие молекулу. Однако образование одних связей из-за стереохимических соображений делает невозможным образование других, то есть не все комбинации межнуклеотидных связей в молекуле РНК допустимы (правила конфликтов между связями известны). Требуется для данной нуклеотидной последовательности найти наиболее стабильную вторичную структуру, т. е. допустимый набор межнуклеотидных связей, содержащий наибольшее возможное количество элементов (рис. 1). Эта задача может быть переформулирована как задача построения графа (точнее - гиперграфа, см. ниже) специального вида с максимально возможной суммой весов ребер (вершины соответствуют нуклеотидам, ребра - установленным связям) и решена с помощью метода динамического программирования (Ruth Nussinov и соавт., 1978; также см. гл. 7 в книге М. Уотермена). Однако появляющиеся ограничения на вид графа весьма экзотичны с точки зрения небиологических приложений. Другой пример задачи, не имеющей смысла вне биологического контекста, -распознавание кодирующих фрагментов ДНК, рассмотренное в статье Михаила Гельфанда.

Рис. 1. Вторичная структура участка бактериофага Qb (231 основание). Сплошные линии проведены между парами оснований, связанных водородными связями.

Возвращаясь к задаче распознавания наиболее стабильной «вторичной» структуры РНК, отметим следующие обстоятельства, характерные для многих важных задач биоалгоритмики:

- в описанной выше модели правильнее считать не количество связей, а их суммарную энергию, энергия каждой возможной пары считается известной. С алгоритмической точки зрения задача практически не меняется;

- модель, положенная в основу описанной выше задачи, - упрощенная и во многих случаях не согласуется с экспериментом. Полезно учитывать и вклад нуклеотидов, не участвующих в образовании водородных связей. Ограничения на множество допустимых наборов связей, принятые в задаче (а), слишком строгие. Различные формальные постановки задач, лучше отражающие биологическую реальность, приводят к существенному усложнению алгоритма;

- в реальности молекула РНК может принимать не ту структуру, которой мы приписали оптимальную энергию, а несколько иную, например, из-за того, что мы не знаем точных значений энергетических параметров. Поэтому полезно не искать одну «оптимальную» структуру, а проанализировать все возможные структуры и оценить вероятность образования каждой отдельной связи («статистический вес» связи). Это также можно решить методом динамического программирования.

- многие авторы пытаются выяснить вторичную структуру РНК, не сводя ее к какой-либо алгоритмической оптимизационной задаче, а путем моделирования реального процесса «сворачивания» молекулы РНК (т. е. установления и исчезновения водородных связей).

Специфика биоалгоритмики, однако, проявляется не только в задачах, которые «по определению» не могли встретиться вне анализа биологических последовательностей. Показательна самая старая и, наверное, самая популярная задача анализа биологических последовательностей - их выравнивание. Выравнять две последовательности - это изобразить их друг над другом, вставляя в обе пробелы так, чтобы сделать их длины равными. Вот, например, как можно выровнять слова ПОДБЕРЕЗОВИК и ПОДОСИНОВИК (cм. врезку).

Такой способ изображения последовательностей широко распространен в молекулярной биологии. Предполагается, что выравнивание отражает эволюционную историю, то есть стоящие друг под другом символы соответствуют одному и тому же символу последовательности-предка. К сожалению, мы не знаем, как именно шла эволюция последовательностей. Поэтому в качестве «правильного» обычно выбирается выравнивание, оптимальное относительно некоторой функции качества. Но как мы можем контролировать правильность выбора этой функции? Есть ли у нас (пусть приблизительные) «эталоны»? К счастью, да. В качестве эталонных можно взять выравнивания, соответствующие наилучшему возможному совмещению их пространственных структур (такие структуры известны для нескольких сотен белков). Это связано с тем, что функционирование белка в клетке определяется прежде всего его пространственной структурой и можно ожидать, что аминокислоты, лежащие в сходных местах трехмерной структуры, соответствуют одним и тем же аминокислотам предкового белка.