Традиционно к биоинформатике относится:
- статистический анализ последовательностей ДНК;
- предсказание функции по последовательности (распознавание генов в последовательности ДНК, поиск регуляторных сигналов, предсказание функций белков - некоторые из этих задач рассмотрены в следующей статье);
- анализ пространственной структуры белков и нуклеиновых кислот, в том числе предсказание структуры белка по последовательности, - здесь биоинформатика граничит с биофизикой и физикой полимеров;
- теория молекулярной эволюции и систематика.
Следует отметить, что многие задачи из разных областей решаются сходными алгоритмами, один из примеров этого приводится в статье М. А. Ройтберга.
В последние годы возник ряд новых задач, связанных с прогрессом в области автоматизации не только секвенирования, но и других экспериментальных методов: масс-спектрометрии, анализа белок-белковых взаимодействий, исследования работы генов в различных тканях и условиях (см. статью И. А. Григорян и В. Ю. Макеева в этом номере). При этом не только возникает необходимость создавать и заимствовать из других областей новые алгоритмы (например, для обработки результатов экспериментов в области протеомики* широко применяются методы анализа изображений), но и происходит распространение биоинформатических подходов на смежные области, например популяционную и медицинскую генетику. Существенно при этом, что роль биоинформатики не сводится к обслуживанию экспериментаторов, как это было еще несколько лет назад: у нее появились собственные задачи. Более подробно об этом можно прочитать в обзоре (М. С. Гельфанд, А. А. Миронов. Вычислительная биология на рубеже десятилетий. Молекулярная биология. 1999, т. 33, № 6, с. 969-984); можно упомянуть также сборник статей (Математические методы для анализа последовательностей ДНК. М. С. Уотермен, ред. - М.: Мир, 1999). Проект курса по биоинформатике, перечисляющий основные направления. Основные журналы по биоинформатике - «Bioinformatics», «Journal of Computational Biology» и «Briefings in Bioinformatics», конференции - ISMB (Intellectual Systems for Molecular Biology) и RECOMB (International Conference on Computational Biology).
Словарь
[i41320]
1 (обратно к тексту) - Вопрос о том, что такое полностью секвенированный геном многоклеточного организма, нетривиален. В частности, значительную его часть (несколько процентов) составляют повторы, которые и вообще крайне сложны для секвенирования. В таких областях находится мало генов, и поэтому их обычно оставляют «на потом». Текущее же состояние генома человека напоминает рассыпанную мозаику, часть элементов которой отсутствует, а кроме того, подмешаны фрагменты других мозаик (посторонние последовательности).
2 (обратно к тексту) - В плане одного академического института на 2001 год в разделе «биоинформатика» можно было встретить, например, компьютерное моделирование сокращений сердечной мышцы - это очень интересная и уважаемая, но совершенно отдельная тема. А в университетском курсе биоинформатики предлагается изучать «Возможный механизм пунктурной терапии».
3 (обратно к тексту) - См. очень поучительную заметку Клода Шеннона «The Bandwagon» (Trans. IRE, 1956, ИТ-2 (1), 3, русский перевод в: К. Шеннон. Работы по теории информации и кибернетике. - М.: Изд-во иностранной литературы, 1963). Вот цитата: «Сейчас теория информации, как модный опьяняющий напиток, кружит голову всем вокруг. Для всех, кто работает в области теории информации, такая популярность несомненно приятна и стимулирует их работу, но в то же время и настораживает… Здание нашего несколько искусственно созданного благополучия слишком легко может рухнуть, как только в один прекрасный день окажется, что при помощи нескольких магических слов, таких как информация, энтропия, избыточность… нельзя решить всех нерешенных проблем… На понятия теории информации очень большой, даже, может быть, слишком большой спрос. Поэтому мы сейчас должны обратить особое внимание на то, чтобы исследовательская работа в нашей области велась на самом высоком научном уровне, который только возможно обеспечить».
Словарь
ДНК (дезоксирибонуклеиновая кислота) - полимерная молекула, элементарными единицами которой являются четыре нуклеотида: A, C, G, T. Ген - участок ДНК, кодирующий один белок. Белок - полимер, в построении которого принимают участие 20 аминокислот (на самом деле больше, но другие аминокислоты появляются в результате дополнительной химической модификации). Белки играют основную роль в жизни клетки - формируют ее скелет, катализируют химические реакции, выполняют регуляторные и транспортные функции. В живой клетке каждая молекула белка имеет сложную пространственную структуру (см. рис. 1).
Рис. 1. Схема биосинтеза белка. РНК-полимераза синтезирует РНКовую копию (мРНК) фрагмента ДНК (транскрипция). Рибосома транслирует мРНК и осуществляет синтез белка, присоединяя аминокислоты в соответствии с таблицей генетического кода (см. рис. 1 к следующей статье). Затем белок сворачивается в пространственную структуру (об этом подробнее см. в КТ #398). |
Геном - совокупность всех генов организма или, шире, полная последовательность ДНК. Размер генома человека - 3 миллиарда нуклеотидов, кодирующих 35-40 тысяч генов 1, генома бактерий - от 600 тысяч нуклеотидов/600 генов (внутриклеточные паразиты) до 6-8 миллионов нуклеотидов/5-6 тысяч генов (свободно живущие бактерии). Упражнение: в скольких выпусках журнала «Компьютерра» можно будет опубликовать бактериальный геном, если посвящать этому половину каждого номера?
Секвенирование - определение последовательности нуклеотидов во фрагменте ДНК. Именно это имеется в виду, когда в газетах пишут о «расшифровке генома человека». Исследование работы генов в масштабе целых организмов, а также эволюция геномов составляют предмет геномики, а анализ полного набора белков в клетке и их взаимодействий друг с другом - предмет протеомики 2.
Например, исследователи из голландского «Центра природных вычислений» при Лейденском университете полагают, что, освоив некоторые приемы генетических манипуляций, заимствованные у простейших одноклеточных организмов - ресничных инфузорий, человечество сможет воспользоваться гигантским вычислительным потенциалом, скрытым в молекулах ДНК.
Ресничные обитают на Земле, по меньшей мере, два миллиарда лет, их обнаруживают практически повсюду, даже в самых негостеприимных местах. Директор Центра Гжегож Розенберг (Grzegorz Rozenberg), называет эти инфузории «одним из наиболее успешных организмов на Земле». Ученые объясняют такую «удачливость» чрезвычайно эффективными механизмами манипуляции собственной ДНК, позволяющими инфузориям приспосабливаться практически к любой среде обитания.
Уникальность ресничных в том, что их клетка имеет два ядра - одно большое, «на каждый день», где в отдельных нитях хранятся копии индивидуальных генов; и одно маленькое, хранящее в клубке используемую при репродукции единственную длинную нить ДНК со всеми генами сразу. В ходе размножения «микроядро» используется для построения «макроядра» нового организма. В этом ключевом процессе и происходят чрезвычайно интересные для ученых «нарезание» ДНК микроядра на короткие сегменты и их перетасовка, гарантирующие то, что в макроядре непременно окажутся нити с копиями всех генов.
Розенбергом и его коллегами установлено, что способ, с помощью которого создаются эти фрагменты, удивительно напоминает технику «связных списков», издавна применяемую в программировании для поиска и фиксации связей между
массивами информации. Более глубокое изучение репродуктивной стратегии ресничных инфузорий при сортировке ДНК открывает новые и интересные методы «зацикливания», сворачивания, исключения и инвертирования последовательностей.Напомним, что в 1994 году Леонардом Эдлманом (Leonard Adleman) экспериментально было продемонстрировано, как с помощью молекул ДНК в единственной пробирке можно быстро решать классическую комбинаторную «задачу про коммивояжера» (обход вершин графа по кратчайшему маршруту), «неудобную» для компьютеров традиционной архитектуры. Результаты же экспериментов ученых из лейденского центра дают основания надеяться, что в недалеком будущем ресничные инфузории можно будет использовать для реальных ДНК-вычислений.
А вот английские исследователи из компании British Telecom пришли к выводу, что изучение поведения колоний бактерий дает ключ к решению сложнейшей задачи упорядочивания коммуникационных сетей.
Для описания ближайшего будущего компьютеров сегодня все чаще привлекают популярную концепцию «всепроникающих вычислений» - идею о гигантской совокупности микрокомпьютеров, встроенных во все предметы быта и незаметно взаимодействующих друг с другом. В этой единой беспроводной сети будет увязано все: кухонная техника, бытовая электроника, следящие за микроклиматом сенсоры в комнатах, радиомаяки на детях и домашних животных… Список этот можно увеличивать бесконечно. Но сейчас добавление каждой новой «умной штучки» отнимает массу времени, чтобы взаимно подстроить работу этого устройства и уже сформировавшейся конфигурации. В концепции же будущего, поскольку хозяева дома, по определению, не обладают ни временем, ни знаниями для настройки совместной работы всей этой армии бесчисленных «разумных вещей», изначально предполагается способность системы к самоорганизации. Поэтому достаточно
естественно, что взгляд ученых устремился к природе, где подобные задачи решены давно и успешно. В частности, эксперименты исследователей British Telecom показали, что их система, имитирующая поведение колонии бактерий в строматолитах 1, способна поддерживать работу сети из нескольких тысяч устройств, автоматически управляя большими популяциями отдельных элементов.