Смекни!
smekni.com

Логические основы теории аргументации (стр. 3 из 4)

Ошибка «кто слишком мало доказывает, тот ничего не доказывает» воз-никает тогда, когда вместо тезиса а мы докажем более слабый тезис b. На-пример, если, пытаясь доказать, что это животное — зебра, мы доказыва-ем, что оно полосатое, то ничего не докажем, ибо и тигр — тоже полосатое животное.

4.3 Правила по отношению к аргументам

1) Аргументы, приводимые для доказательства тезиса, должны быть истинными и не противоречащими друг другу.

2) Аргументы должны быть достаточным основанием для доказа-тельства тезиса.

3) Аргументы должны быть суждениями, истинность которых дока-зана самостоятельно, независимо от тезиса.

4.4 Ошибки в основаниях (аргументах) доказательства

1. Ложность оснований («основное заблуждение»). В качестве аргументов берутся не истинные, а ложные суждения, которые выдают или пытаются выдать за истинные. Ошибка может быть непреднамеренной. Например, до Коперника ученые считали, что Солнце вращается вокруг Земли и, ис-ходя из этого ложного аргумента, строили свои теории. Ошибка может быть и преднамеренной (софизмом) с целью запутать, ввести в заблужде-ние других людей (например, дача ложных показаний свидетелями или об-виняемыми в ходе судебного расследования, неправильное опознание ве-щей или людей и т.п., из чего затем делаются ложные заключения).

2. «Предвосхищение оснований». Аргументы не доказаны, а тезис опира-ется на них. Недоказанные аргументы только предвосхищают, но не дока-зывают тезис.

3. «Порочный круг». Ошибка состоит в том, что тезис обосновывается ар-гументами, а аргументы обосновываются этим же тезисом. Например, К. Маркс вскрыл эту ошибку в рассуждениях Д. Уэстона, одного из деятелей английского рабочего движения. Маркс пишет: «Итак, мы начинаем с за-явления, что стоимость товаров определяется стоимостью труда, а кончаем заявлением, что стоимость труда определяется стоимостью товаров. Таким образом, мы поистине вращаемся в порочном кругу и не приходим ни к какому выводу».

4.5 Правило по отношению формы обоснования тезиса (демонстрации)

Тезис должен быть заключением, логически следующим из аргументов по общим правилам умозаключений или полученным в соответствии с пра-вилами косвенного доказательства.

4.6 Ошибки в форме доказательства

1. Мнимое следование. Если тезис не следует из приводимых в его подтверждение аргументов, то возникает ошибка, называемая «не вытекает», «не следует». Люди иногда вместо правильного доказательства соединяют аргументы с тезисом посредством слов «следовательно», «итак», «таким образом», «в итоге имеем» и т.п., полагая, что они установили логическую связь между аргументами и тезисом. Эту логическую ошибку часто неосознанно допускает тот, кто не знаком с правилами логики и полагается только на свой здравый смысл и интуицию. В результате возникает словесная видимость доказательства.

2. От сказанного с условием к сказанному безусловно. Аргумент, истинный только с учетом определенного времени, отношения, меры, нельзя приво-дить в качестве безусловного, верного во всех случаях. Так, если кофе поле-зен в небольших дозах (для поднятия артериального давления, например), то в больших дозах он вреден. Аналогично, если мышьяк в небольших дозах добавляют в некоторые лекарства, то в больших дозах он — яд. Лекарства врачи должны подбирать для больных индивидуально. Педагогика требует индивидуального подхода к учащимся. Этика определяет нормы поведения людей, и в различных условиях они могут несколько варьироваться (напри-мер, правдивость — положительная черта человека, но если он выдаст тай-ну врагу, то это будет преступлением).

3. Нарушение правил умозаключений (дедуктивных, индуктивных, по аналогии):

а). Ошибки в дедуктивных умозаключениях. Например, в условно-категорическом умозаключении нельзя вывести заключение от утверждения следствия к утверждению основания. Так, из посылок «Если число оканчивается на 0, то оно делится на 5» и «Это число. делится на 5» не следует вывод: «Это число оканчивается на 0». Ошибки в дедуктивных умозаключениях были подробно освещены ранее.

б). Ошибки в индуктивных умозаключениях. «Поспешное обобщение», на-пример, утверждение, что «все свидетели дают необъективные показания». Другой ошибкой является «после этого — значит, по причине этого» (на-пример, пропажа вещи обнаружена после пребывания в доме этого челове-ка, значит, он ее унес).

в). Ошибки в умозаключениях по аналогии. Например, африканские пиг-меи неправомерно умозаключают по аналогии между чучелом слона и жи-вым слоном. Перед охотой на слона они устраивают ритуальные танцы, изображая эту охоту, копьями протыкают чучело слона, считая (по анало-гии), что и охота на живого слона будет удачной, т.е. что им удастся прон-зить его копьем.

5. Понятие о софизмах и логических парадоксах

Непреднамеренная ошибка, допущенная человеком в мышлении, назы-вается ларалогизмом. Паралогизмы допускают многие люди, Преднамерен-ная ошибка с целью запутать своего противника и выдать ложное суждение за истинное называется софизмом. Софистами называют людей, которые ложь пытаются выдать за истину путем различных ухищрений.

В математике имеются математические софизмы. В конце XIX — начале XX в. большой популярностью среди учащихся пользовалась книга В.И. Обреимова «Математические софизмы», в которой собраны многие софизмы. И в ряде современных книг собраны интересные математические софизмы. Например, Ф.Ф. Нагибин формулирует следующие математиче-ские софизмы:

1) «5=6»;

2) «2

2=5»;

3) «2=3»;

4) «Все числа равны между собой»;

5) «Любое число равно половине eгo»;

6) «Отрицательное число равно положительному»;

7) «Любое число равно нулю»;

8) «Из точки на прямую можно опустить два перпендикуляра»;

9) «Прямой угол равен тупому»;

10) «Всякая окружность имеет два центра»;

11) «Длины всех окружностей равны» и многие другие.

2

2 = 5. Требуется найти ошибку в следующих рассуждениях. Имеем числовое тождество: 4 : 4 = 5 : 5. Вынесем за скобки в каждой части этого тождества общий множитель. Получим 4 (1 : 1) = 5 (1 : 1). Числа в скобках равны. Поэтому 4=5, или 2

2=5.

5 = 1. Желая доказать, что 5 = 1, будем рассуждать так. Из чисел 5 и 1 по отдельности вычтем одно и то же число 3. Получим числа 2 и — 2. При возведении в квадрат этих чисел получаются равные числа 4 и 4. Значит, должны быть равны и исходные числа 5 и 1. Где ошибка?

5.1 Понятие о логических парадоксах

Парадокс — это рассуждение, доказывающее как истинность, так и лож-ность некоторого суждения или (иными словами) доказывающее как это суждение, так и его отрицание. Парадоксы были известны еще в древнос-ти. Их примерами являются: «Куча», «Лысый», «Каталог всех нормальных каталогов», «Мэр города», «Генерал и брадобрей» и др. Рассмотрим некото-рые из них.

Парадокс «Куча». Разница между кучей и не-кучей — не в одной песчин-ке. Пусть у нас есть куча (например, песка). Начинаем из нее брать каждый раз по одной песчинке, и куча остается кучей. Продолжаем этот процесс. Если 100 песчинок — куча, то 99 — тоже куча и т.д. 10 песчинок — куча, 9— куча, ... 3 песчинки — куча, 2 песчинки — куча, 1 песчинка — куча. Итак, суть парадокса в том, что постепенные количественные изменения (убавле-ние на 1 песчинку) не приводят к качественным изменениям.

5.2 Парадоксы теории множеств

В письме Готтлобу Фреге от 16 июня 1902 г. Бертран Рассел сообщил о том, что он обнаружил парадокс множества всех нормальных множеств (нормальным множеством называется множество, не содержащее себя в качестве элемента).

Примерами таких парадоксов (противоречий) являются «Каталог всех нормальных каталогов», «Мэр города», «Генерал и брадобрей» и др.

Парадокс, называемый «Мэр города», состоит в следующем: каждый мэр города живет или в своем городе, или вне его. Был издан приказ о выделе-нии одного специального города, где жили бы только мэры, не живущие в своем городе. Где должен жить мэр этого специального города? а). Если он хочет жить в своем городе, то он не может этого сделать, так как там жи-вут только мэры, не живущие в своем городе, б). Если же он не хочет жить в, своем городе, то, как и все мэры, не живущие в своих городах, должен жить в отведенном городе„т.е. в своем. Итак, он не может жить ни в своем городе, ни вне его.

Таким образом, в логику входит категория времени, категория измене-ния: приходится рассматривать изменяющиеся объемы понятий. А рассмо-трение объема в процессе его изменения — это уже аспект диалектической логики. Трактовка парадоксов математической логики и теории множеств, связанных с нарушением требований диалектической логики, принадле-жит С.А. Яновской. В примере с каталогом удается избежать противоречия потому, что объем понятия «каталог всех нормальных каталогов» берется на какое-то определенное, точно фиксированное время, например, на 20 ию-ня 1998 г. Имеются и другие способы избежать противоречий такого рода.

6. Искусство ведения дискуссии

Роль доказательства в научном познании и дискуссиях сводится к подбо-ру достаточных оснований (аргументов) и к показу того, что из них с логи-ческой необходимостью следует тезис доказательства.

Правила ведения дискуссии можно показать на примере проведения диспута молодежи. Диспут позволяет рассматривать, анализировать про-блемные ситуации, развивать способность аргументированно отстаивать свои знания, свои убеждения.

Диспуты могут быть спланированы заранее или возникать экспромтом (в походе, после просмотра кинофильма и т.д.). В первом случае заранее можно прочитать литературу, подготовиться, во втором — преимущество в эмоциональности. Очень важно выбрать тему диспута, она должна звучать остро и проблематично.

В ходе диспута надо ставить 3-4 вопроса, но так, чтобы на них нельзя бы-ло дать однозначных ответов.