Подобно аксиоматическим оставшимся правилам смысла языка также должны соответствовать аналогичные правила смысла в другом языке, если выражения одного языка, к которому относятся эти правила смысла, должны быть переводимы на другой язык. Прежде чем мы это утверждение сформулируем точнее, отметим следующее. Ранее мы установили условие переводимости А в выражение А из языка S в S с тем, что если А находится в непосредственной смысловой связи с А1 , А2 , ...,Аn, то и А находилось бы в аналогичных смысловых связях с переводами выражений А1 , А2 , ...,Аn из языка S в S , если такие переводы существуют. Сужение этого утверждения замечанием "если переводы выражений А1 , А2 , ...,Аn в язык S существуют" только тогда необходимо, когда мы не ограничиваемся замкнутыми языками, но принимаем во внимание также открытые языки, поскольку из дефиниции замкнутого языка S непосредственно следует, что в случае существования в нем перевода выражения А из языка S, существуют в нем также переводы всех тех выражений, с которыми А находится в S в непосредственных смысловых связях. Таким образом, если речь идет о замкнутых языках, то упоминавшееся ограничение установленного выше утверждения можно опустить.
Ранее мы говорили, что если выражение А в языке S находится в непосредственных смысловых связях с некоторыми выражениями А1 , А2 , ...,Аn , то перевод А из языка S в S должен находится в аналогичных смысловых связях с переводами выражений А1 , А2 , ...,Аn. Поскольку смысловые связи отображаются в областях правил смысла, а следовательно также в их совокупной области, постольку мы можем - ограничиваясь замкнутыми языками - придать упоминаемому утверждению следующую формулировку: если А является переводом А из языка S в S , а также S и S суть языки замкнутые, то все элементы совокупной области правил смысла языка S , содержащие А , должны быть образованы из элементов совокупной области правил смысла языка S, содержащих А ,таким образом, что в области, названной последней, заменится везде А на А , а остальные, содержащиеся в них выражения (и синтаксические формы) - их переводами[8].
Сейчас мы займемся языками взаимно переводимыми и взаимно непереводимыми. Мы всегда будем иметь в виду дословные переводы, т.е. переводы выражения в выражение, а не только предложение в предложение. Два языка назовем взаимно переводимыми тогда и только тогда, когда каждому выражению одного языка соответствует одно или несколько выражений другого языка, являющиеся его переводами с одного языка на другой, и vice versa.
Мы утверждаем следующее: если два языка S и S являются оба замкнутыми и связными, и если в языке S имеется выражение А , являющееся переводом выражения А из языка S в S , то оба языка взаимно переводимы. Если бы было иначе, то в S существовало бы выражение Аn, которому в языке S не соответствовал бы ни один перевод, или vice versa. Однако, если определенное выражение замкнутого языка непереводимо на другой замкнутый язык, то и все непосредственно связанные с ним по смыслу выражения должны быть непереводимыми. Пусть, например, Аx будет выражением непосредственно связанным по смыслу с Аn . Если Аn из языка S непереводимо на S , то и Аx должно быть непереводимо, ибо если бы Аx имело свой перевод в S , то и непосредственно связанные по смыслу с Аx выражения, а среди них Аn, должны были бы иметь свои переводы в S (поскольку согласно предположению S является замкнутым языком). Однако Аn , как мы предположили, не переводимо. По этой же причине не будут переводимы всяческие возможные Аy , непосредственно связанные по смыслу с Аx. Далее, можно было бы доказать, что выражения, непосредственно связанные по смыслу с непереводимыми Аy , опять же непереводимы и т.д. Однако все эти выражения являются одно- либо многоступенчато опосредованно связанными по смыслу с Аn . Таким образом, если Аn непереводимо, то все непосредственно и опосредованно связанные по смыслу с Аn выражения непереводимы.
Сейчас примем во внимание класс выражений языка S, связанных по смыслу с Аn (обозначим его S1 ), и класс оставшихся выражений языка S (обозначим его S2 ). Первый класс состоит исключительно из непереводимых выражений, а поэтому не содержит выражение А, поскольку оно, вследствие допущения, переводимо. Таким образом, класс S2 не пуст. Ни одно из принадлежащих ему выражений не может находится в смысловой связи с каким-либо выражением из класса S1 , поскольку оно тогда вступило бы в связь по смыслу с Аn и принадлежало бы S1 . Итак, если выражение А переводимо, тогда как Аn - нет, то отсюда следует, что класс выражений языка S можно разделить на два непустых класса, причем между выражениями обоих классов не возникают никакие смысловые связи, т.е. язык S не является связным. Однако это противоречит предположению, которое мы сделали относительно языка S.
Тем самым мы доказали, что если S и S являются языками связными и замкнутыми и некоторое выражение одного языка переводимо в другой язык, тогда все выражения этого языка переводимы на другой.
Сейчас мы можем вернуться к вопросу, может ли открытый язык быть дополнен до замыкания двух замкнутых и связных, взаимно непереводимых языков? На основании сказанного выше ясно, что так быть не может. Если бы так было, то существовало бы два замкнутых и связных языка, в которых некоторые выражения были бы переводимы (а именно, выражения, общие с открытым языком), другие же нет. Это противоречит только что доказанному утверждению.
Из выше приведенных рассуждений следует, что каждый смысл, который мы находим в замкнутом и связном языке, можно обнаружить и в каждом языке, который с данным языком взаимно переводим, однако кроме этого [языка, упомянутый смысл] не находится ни в одном другом замкнутом и связном языке. Система всех находящихся в замкнутом и связном языке смыслов не пересекается ни с одной другой такой системой. Такую систему смыслов назовем понятийным аппаратом (Begriffsapparatur). Нельзя пользоваться ни одним языком, в который одновременно входят смыслы из двух различных понятийных аппаратов без того, чтобы перейти тем самым к несвязному языку.
§ 10. Попытка определения "смысла".
До настоящего времени мы в рассуждениях поступали таким образом, что не вводя дефиниции термина "смысл" и опираясь на общепринятое его понимание, выводили некоторые относящиеся к смыслу утверждения, из которых в дальнейшей последовательности рассуждений выводили последующие заключения на основании безапелляционных дефиниций нескольких технических терминов. Сейчас мы предложим дефиницию термина "смысл", на основании которой все выше высказанные утверждения удастся четко обосновать. Эту дефиницию мы не будем "доказывать", т.е. показывать ее согласованность с общепринятым понятием смысла, ибо "общепринятое понятие смысла" является весьма изменчивым понятием. Именно по этой причине невозможно совпадение четко разграничивающей дефиниции с такого вида понятием. Поскольку мы стремимся к четко очерченному понятию, то для нас вовсе не желательно, чтобы наша дефиниция полностью соответствовала обыденному понятию смысла. Тем не менее мы хотели бы, чтобы у читателя сложилось впечатление, что установленная нами дефиниция, по крайней мере, в своем объеме соответствовала бы существеннейшей из всевозможных интенций, скрывающейся под именем "смысл". Добавим также, что предлагаемую дефиницию мы едва очертим, не претендуя на полноту и совершенство. И еще одно замечание: говоря в дальнейшем изложении о языках, мы будем принимать во внимание только языки замкнутые и связные, поскольку ранее названные открытые языки являются собственно фрагментами языков замкнутых , которые единственно и заслуживают называться полным языком. Несвязные языки также не являются языками в собственном смысле, но произвольными отпечатками немногих связных языков.
Сейчас мы начнем очерчивать нашу дефиницию. Языком мы называем образование, однозначно определенное классом знаков и матрицей (Matrix), образованной из этих знаков, а также, возможно, чувственных данных (матрице соответствует ранее обсуждавшаяся совокупная область правил смысла). Элементы этого класса знаков, совместно очерчивающие язык, мы назовем выражениями языка. Матрица языка - это таблица, составленная из трех частей, одна из которых соответствует сумме областей всех аксиоматических правил смысла, вторая - сумме областей всех дедуктивных правил смысла, а третья - сумме областей всех эмпирических правил смысла. Первая часть состоит из строк, каждая из которых является последовательностью. Отдельные члены этой последовательности образованы из всех выражений, входящих в некоторую аксиому этого языка (т.е. в предложение, принадлежащее к области аксиоматического правила смысла), в том числе и из самой аксиомы. Принцип упорядочивания, согласно которому эти выражения следуют друг за другом в строках, зависит от синтаксической роли выражений в предложении и является одним и тем же во всех строках. Этот принцип можно сформулировать так: сначала всё выражение, потом его главный функтор, затем первый аргумент этого функтора, затем второй аргумент и т.д. Согласно этому принципу упорядоченные выражения, входящие в конъюнкцию предложений, например, "Иван любит Марию и Иосиф любит Анну" образовывали бы следующую последовательность: 1) "Иван любит Марию и Иосиф любит Анну", 2) "и", 3) "Иван любит Марию", 4) "любит", 5)"Иван", 6)"Марию" 7) "Иосиф любит Анну", 8) "любит", 9) "Иосиф", 10) "Анну". Или, например, символы предложения "p q . . p q" cогласно этому принципу были бы упорядочены так: