Смекни!
smekni.com

Язык и смысл (стр. 6 из 10)

Можно ли дополнить открытый язык S до замыкания различных связных языков? Конечно, это возможно, если язык не будет полностью замкнут уже посредством добавления одного выражения. А именно, добавляя к открытому языку S выражение W, или выражение V, или оба вместе, и дополняя его частично до замыкания языка Sw, или Sv, или Sw,v и т.д. до тех пор, покамест посредством добавления все новых выражений мы не придем к полностью замкнутому языку. Является ли этот путь единственным, которым можно дополнить открытый язык до связного замкнутого языка? Если да, то для открытого языка существовал бы один единственный замкнутый и связный язык, до которого его можно было бы дополнить. Это привело бы к совершенно парадоксальным последствиям. В частности, по следующей причине: допустим, что открытый язык S удается полностью дополнить до замкнутого языка S посредством добавления нескольких выражений, среди которых выражения W1 и W2. Пусть языку S будет присуще следующее подчинение смыслов: выражению W1 соответствует смысл 1, выражению W2 - смысл 2. Рассмотрим другой язык S , в той единственной подробности отличающийся от языка S , что в S выражению W1 подчинен смысл 2, тогда как выражению W2 - смысл 1. Очевидно, что дополнение открытого языка S до замыкания языка S точно также возможно, как и его дополнение до замыкания языка S . Если бы так не произошло, то это значило, что в открытом языка, например, в языке обычного исчисления предложений с первичными терминами " " и " " , но без определяемых знаков, можно ввести знак " " или знак "o", с обычно приписываемыми им смыслами, но нельзя ввести эти знаки со взаимно изменяемыми смыслами. Это следствие не может быть принято, поскольку оно совершенно противоречит тому, что вообще понимается под смыслом. Учитывая сказанное, можно дополнить полностью открытый язык до замыкания двух различных связных языков.

Сейчас мы исследуем в каком отношении должны находится два различных замкнутых и связных языка S и S , если существует открытый язык S, который можно полностью дополнить до замыкания равно как языка S , так и S . В исследованном выше случае S возник из S вследствие обмена смыслов выражений W1 и W2. Следовательно, там мы занимались двумя взаимно переводимыми языками. Мы называем S переводом языка S , если все выражения одного языка могут быть взаимно однозначно подчинены выражениям другого таким образом, что взаимно подчиненные друг другу выражения имеют один и тот же смысл. Сейчас перед нами возникает вопрос, обязательно ли должны быть взаимно переводимыми два замкнутых и связных языка S и S , если можно полностью дополнить до их замыкания открытый язык S?

Чтобы ответить на этот вопрос, мы должны несколько ближе заняться понятием перевода.

§ 9. Синонимы и переводы.

Сначала мы установим условие равноосмысленности (Sinngleichheit) или синонимичности двух выражений А и А одного и того же языка S. Оно звучит так: если А и А обладают в языке S одним и тем же смыслом, то их поведение единообразно в совокупной области правил смысла языка, т.е. совокупная область правил смысла не должна претерпеть изменения вследствие того, что во всех ее элементах произойдет подстановка А вместо А, и А вместо А . Это значит: 1) если согласно какому-то правилу смысла предложение Z должно быть безоговорочно признано, то существует аксиоматическое правило смысла, согласно которому следует безоговорочно признать предложение, полученное из предложения Z посредством замены А на А и А на А ; 2) если существует дедуктивное правило смысла, согласно которому можно из предложения (или из класса предложений) Z1 вывести предложение Z2, то существует также дедуктивное правило смысла, согласно которому из предложения, возникшего из Z1 посредством замены А на А и А на А можно вывести предложение, возникшее из Z2 посредством замены А на А и А на А ; 3) если согласно эмпирическому правилу смысла на основании определенных данных можно признать предложение Z, то существует также правило смысла, согласно которому на основании этих же данных следует признать предложение, возникшее из предложения Z посредством замены А на А и А на А .

Заметим здесь, что равноосмысленность и эквивалентность двух выражений - это не одно и то же. Два выражения А и А эквивалентны, если каждому истинному предложению, содержащему А, соответствует истинное предложение, возникшее из него посредством замены А на А и А на А , и наоборот. Два эквивалентные в приведенном здесь понимании выражения вовсе не должны быть равноосмысленны. Так, например, в логическом исчислении предложений Уайтхеда и Рассела выражения "a b" и " a b" эквивалентны, но не равноосмыслены, поскольку, например, существует дедуктивное правило смысла требующее готовности вывода "b" на основании "a b" и "а", тогда как аналогичного правила смысла для " a b" нет. Из приведенной выше дефиниции эквивалентности можно через абстракцию получить дефиницию [логической] валентности выражения, которая в случае, например, имен дает дефиницию области имени (в терминологии Милля - денотации).

Приведенное выше необходимое условие равноосмысленности двух выражений одного и того же языка влечет за собой некоторые следствия, которые мы не хотим обойти молчанием. А именно, речь идет о том, являются ли два выражения А и В, считающиеся по определению равными, имеющими также один и тот же смысл. Ответ зависит от того, как понимается дефиниция. Если дефиниция является правилом вывода, которое, например, говорит , что если какое-то предложение признается и можно также признать предложение, полученное из него вследствие замены А на В, и наоборот, то выражения А и В не обязаны обладать одним и тем же смыслом. Это как минимум следует из установленного выше необходимого условия равноосмысленности двух выражений одного и того же языка.

Допустим, что в языке имеется аксиоматическое правило смысла, содержащее в своей области предложение "F[a]", но нет аксиоматического правила смысла, которое бы в своей области содержало "F[b]". Пусть, кроме этого, обязательно дедуктивное правило смысла, основывающееся на дефиниции, которая объясненным выше образом признает равными знаки "а" и "b". Очевидно, что поскольку правила смысла языка опосредованно или непосредственно ведут к признанию некоторого предложения "Ф[a]", то они приводят также к признанию "Ф[b]", согласно приведенному выше (основанному на дефиниции "а=b") правилу смысла, поскольку согласно этому правилу смысла везде правомерной будет замена "а" на "b". Однако несмотря на это "а" и "b" не выполняют выше установленного условия равноосмысленности. Правда, существует аксиоматическое правило смысла, требующее безоговорочной готовности признания "F[a]" (как аксиомы), но нет такого, которое требовало бы безусловного признания "F[b]" (как аксиомы), хотя "F[b]" дедуктивно следует из "F[a]" и как следствие аксиомы "F[a]" является утверждением.

Совершенно иным будет ответ на вопрос, выполняют ли необходимое условие для равноосмысленности два приравненных дефиницией выражения, когда такого вида дефиниция будет понята не как правило вывода, а как утверждение о правилах вывода и аксиомах. Если мы понимаем дефиницию, устанавливающую равенство выражений "А" и "В" как утверждение, провозглашающее: "каждое правило вывода должно (с этого момента) говорить о "В" то же, что и о "А", и каждой аксиоме "Ф[A]", выполняемой "А", соответствует предложение "Ф[B]", выполняемое "В", которое также является аксиомой , то уравненные так понимаемой дефиницией выражения "А" и "В" выполняют также необходимое условие равноосмысленности (по крайней мере в дискурсивных языках). Кажется, что по крайней мере в дедуктивных системах дефиниции никогда не понимаются иначе, т.е. как утверждения о правилах смысла и аксиомах, но всегда считаются или правилами смысла, или (что встречается реже) теоремами системы. Таким образом, установленное нами необходимое условие равноосмысленности не выполняется двумя выражениями, уравненными дефиницией дедуктивной системы. Мы отмечаем это следствие, которое, возможно, кто-нибудь захочет понять как instantia contraria против высказанного нами в тексте утверждения. Подвергнутое сомнению условие не составит большого труда преобразовать таким образом, чтобы освободиться от выше приведенного следствия. Для этого нужно было бы трактовать приведенное условие как единственную альтернативу так, что ему противопоставлялась в качестве второй альтернативы равенство по определению.

Сейчас обратимся к вопросу равноосмысленности двух выражений, принадлежащих разным языкам. Если выражение А обладает в языке S тем же смыслом, что и выражение А в языке S , то назовем выражение А переводом А из языка S в язык S. Отношение перевода является рефлексивным, симметричным и транзитивным отношением. Допустим, что какое-то выражение А является переводом выражения А из языка S в язык S . Пусть выражение А в языке S находится в разнообразных непосредственных смысловых связях с прочими выражениями А1 , А2 , ...,Аn определенных синтаксических форм и, возможно, также с некоторыми чувственно воспринимаемыми данными. Как кажется, формулируемое следующим образом утверждение полностью соответствует повсеместно принятому понятию перевода: "если выражение А является переводом выражения А из языка S в язык S , и если А в языке S находится в непосредственных смысловых связях с А1 , А2 , ...,Аn, и выражения А1 , А2 , ...,Аn также переводимы в язык S (обозначаемые соответственно А 1 , А 2 , ...,А n ), то А также должно находится в S в аналогичных непосредственных смысловых связях с А 1 , А 2 , ...,А n как А с выражениями А1 , А2 , ...,Аn в языке S. Таким образом, если, например, аксиоматическое правило смысла безоговорочно предписывает признать предложение, построенное из выражения А и прочих выражений А1, А2 в соответствии с синтаксической формой К, и если А должно быть переводом А, то поскольку имеются также переводы А1 и А2 (обозначаемые А 1 и А 2 ), а также перевод синтаксической формы (обозначаемой К ), то для языка S должно быть обязательным правило смысла, согласно которому следует безоговорочно признать построенное из А , А 1 , А 2 предложение в соответствии с синтаксической формой К . Допустимые в языке синтаксические формы составных выражений определены синтаксическими правилами языка и присущи языкам также, как и их запас слов, а поэтому подлежат переводу как и слова[7].