Тогда 1) |rx1x2|<0,3
2) 0,3≤|rx1x2|≤0,7 – м/у объясн-ми перем-ми возм-на несоверш мульт-ть.
3). |rx1x2|>0,7 – м/у перем-ми сущ-т несоверш мульт-ть.
Посл-ия наличия мульт-ти:
1). Большие вел-ны дисп-ии оценок, а => станд ошибок коэф-в. Это расшир-т инт-лы для коэф-в ур-ий и м повлиять на правильность вывода о стат знач-ти коэф-та.
2). Т.к. ↓ t стат-ка, то мы м неверно опр-ть стат знач-ть объян-их перем-х и не взять в модель ту из них, кот-ая дейст-но опр-т поведение завис перем-й. Кроме того коэф-ты ур-ия стан-ся очень чувствит-ми к любым изм-ям в выборке.
3). Возм-но получение неверного знака и коэф-та уравнения.
Определения мультиколлиниарности.
Сущ-т неск-ко методов, по кот-м м.б. уст-но наличие в модели мульт-ти переем-х. Косвенными признаками ее наличия м.б:
1). К детерм R² высок, но нек-ые из коэф-тов регр-ии стат не значимы, т.е. имеют низкие t стат-ки.
2). Парная коррел-я м/у объясняющ перем-ми rxixj дост-но высока. Этот признак б надеж-м только в случае 2-х объясн-х переем-х. При их > кол-ве более целесообр-но испол-ие частн коэф-в коррел-ии.
3). Част к-ты коррел высоки. Они опр-т силу лин зав-ти м/у любыми 2 перем-ми без учета влияния на них др переем-х.
Измер-е силы такой лин зав-ти, когда rxy очищен от влияния всех ост-х переем-х наз-т част коэф-м коррел. Нап-р, в случае ур-ия множест регр-ии с 3 объясняющ переем-ми, мы м рассчитать коэф-т част коррел м/у переем-ми х1 и х2 без учета влияния 3 перем-ой. Такой коэф-т обознач-ся
Из этого соотн-ия уже м сделать вывод, что коэф-т част коррел сущ-но отл-ся от коэф-та парной коррел-ии r12.
В общем случае коэф-т част коррел м/у объясн-ми переем-ми xi и xj при усл-ии, что i<j обознач-т
.Приведем без док-ва формулу для расчета люб к-та част коррел в модели, содерж-й m-объясн-х переем-х.
Для этого запишем матрицу парных коэф-в коррел
Причем эта матрица симмет-на, т.к. rij=rji.
Затем к этой матрице состав-т обратную матрицу
,кот-ая также симмет-на отн-но гл диагонали.
Тогда к-т
И в этом случае квадрат такого к-та б опр-ть част коэф=т детерм-ии, кот-ый опр-т % изм-ия i переменной в след-ии влияния на нее перем-й с №j, что позвол-т при усл-ии, что мы 1-й № зафиксир-ли за завис-й перем-й, а 2-1 соотнесли с х1, а 3-й с х2, выяснить влияние только одной из этих перем-х на завис-ю перем-ю без учета влияния др перем-й.
Тогда коэф-т част детерм-и
, а4). Сильная вспомогат (доп) регр-ия.
Мульт-ть м.б. рез-том того, что какая-либо из объясн-х перем-х яв-ся лин комб-ей др объясн-х перем-х.
Чтобы это выяснить для каждой из объясн-х перем-х стр-ся ур-ия регр-ии этой перем-й отн-но ост-х перем-ых.
Ур-ие множест регр-ии m-1 объяс-й перем-й.
Для такого ур-ия
вычисл-т f-стат-ку какИ если оказ-ся, что F стат-ка Fр≤Fкр, то мы говорим, что R² незначим, лин зав-ти xi от ост-х объясн-х переем-х нет, муль-ть отсут-т.
Если Fр>Fкр, то мы откл-ем гипотезу об отсут-ии такой зав-ти, гов-им, что она присут-т в модели => имеет место мульт-ть.
Методы устранения мультиколлиниарности.
Прежде чем рассм-ть эти методы, необ-мо отметить, что в нек-ых случаях мульт-ть не яв-ся таким серьез препятствием для исп-ия модели, чтобы прилагать усилия к ее опр-ию и устранению.
Если осн задача моделир-ия сост-т в прогнози-ии буд знач-ий завис переем-й, то при дост-но больших вел-нах к-та детерм-ии (
или R²≥0,9) мульт-ть никак не скаж-ся на кач-ве прогноза.Если же целью иссл-ия яв-ся выявл-ие каждой из объясн-х перем-ых на завис перем-ую мульт-ть не позволит этого сделать, т.к. она искозит t стат-ки, т.е. стан-ся серьез проблемой.
Единого метода устранения мульт-ти в модели не сущ-т. Это связано с тем, что причины наличия мульт-ти неоднозначны. В многих случаях она зав-т от имеющ-ся выборки.
Рас-м наиболее часто применяемые методы устранения мульт-ти объясн-х переем-х в моделях множ лин регр-ии.
1). Исключение перем-й из модели.
Наиболее простой метод, когда из модели искл-ся 1 или неско-ко переем-х, но при его прим-ии необ-ма остор-ть, т.к. возм-ны ошибки специф-ии.
Нап-р: мы строим модель спроса на какое-то благо, выбирая в кач-ве объясн-х перем-х его цену и цены товаров-заменит. Эти цены часто коррел-т др с др. Но если из модели искл-т цену заменит-ля, то мы скорее всего допустим ошибку специф-ии, получим смещен оценки и сделанные выводы окаж-ся неверн.
Поэтому в приклад-х эконометр-х иссл-х желат-но не искл-ть объяс-е перем-е до тех пор пока их коллин-ть не станет серьез-й проблемой. В част-ти в рассмот-й модели, если необ-м прогноз объема реал-ии искл-ть цену замен-ля нельзя, но если хотим оценить при каком соотн-ии цен на благо и его замен-ли спрос б наибол-м, необ-мо макс-но снижать ур-нь зав-ти м/у этими объясн-ми перем-ми.
2). Получение доп данных или нов выборки.
Т.к. мульт-ть непоср-но зависит от выборки, то возм-но что при изм-ии выборки она перестанет быть серьез пробл-й. Иногда для этого дост-но ↑ объем выборки или сокр-ть вел-ну периодич-ти набл-ий, т.е. от погодовой выборки перейти к покварт или помесяч, иногда ежеднев.
Но получение нов выборки или расшир-е старой возм-но не всегда или связано с большими матер затратами.
Кроме того такой подход, устранив мульт-ть, с вызвать наличие в модели а/коррел-ю остатков, что огран-т возм-ть применения этого метода.
3). Изм-ие специф-ии модели.
Когда или меняется форма зав-ти или добавл-ся объясн перем-е не учтенные в превонач модели, но при этом они д оказать сущест влияние на объясн-ю перем-ю, т.е. если Хк – доп перем-я, то |ryxk|≥0,3. Испол-ие такого метода приводит к уменьшению ∑ квадратов откл-ий в модели ∑ei² ↓, тем самым сокр-ся станд откл-ия к-та Sbi и как след-ие возраст-т стат знач-ть этих к-тов и растет R².
4). Испол-ие предвар инф-ии о нек-ых парам-х модели.
Речь идет о том, что при построении модели множест регр-ии исходя из уже испол-ия моделях парной регр-ии ỹ=bo+b1x1, когда b1=0,82, мы добав-м в модель объян-ю перем-ю х2, кот-ая м.б. корред-на с объясн-й перем-ой х1. Теоретич ур-ие регр-ии с 2 объясн-ми перем-ми сразу запишем в форме y=βo+0,82x1+β2x2+ε
В этом случае ур-ие факт-ки б яв-ся ур-ем парной регр-ии, для кот-го проблемы мульт-ти не сущ-т. Огранич-ть испол-ия этого метода обусл-на тем, что:
1. зачастую затруднено получение достовер предварит инф-ии.
2. Вер-ть того, что принятый изв-й коэф-т б одним и тем же в разн моделях не высок
5). Преобразование переем-х.
Этот метод в нек-ых случаях позвол-т полностью устр-ть мульт-ть. Предпол-м, что по имеющ-ся выборке мы рассч-ли эмпир ур-ие регр-ии ỹ=bo+b1x1+b2x2 и выяснили, что х1 и х2 коррел-ны м/у собой.
В этой ситуации м опр-ть регул-ие зав-ти отн-но каждой из этих переем-ых в отдел-ти, используя в кач-ве нов выборки не абсолют вел-ны перем-х, а их отн-ия. Тогда исход выборку (xi1, xi2, yi) i=1;n, мы делим или на правую или на 2 из объясн-х перем-х.
Тогда в соот-ии с этими выборками мы сможем построить или ур-ие
илиВполне вер-но, что в такой модели мульт-ть уже б отсут-ть.
Гетероскедастичность
Нарушение предпосылки о том, что в модели отсут-т связь м/у случ откл-ми и объян-ой переем-й.
Возн-т вопрос о киках дисперсиях Д(εi) Д(εj) идет речь. Дело в том, что задача реш-ся по конкр-й выборке сформул-й на основе генер-й сов-ти и м/у знач-ми вошедшими в выборку м нах-ся любое кол-во эл-тов и ген сов-ти.
Предпол-м, что на основе выборки б построено ур-ие регр-ии.
График
Тогда отн-но т пересечения линии регр-ии с прямой x=xii=1;n. Для точек, лежащих м/у xi и xi+1 в каждом из подинт-в разбиения в свою очередь м.б. расч-на дисп-ия разброса откл-ий этих точек от линии регр-ии.
Именно о таких дисп-ях, а не о дисп-ях самих откл-ий в модели идет речь в усл-ях
Гаусса-Маркова, что все норм распред-ия в промежутках д.б. одинаковы.
Если это требование не вып-ся, то т.к. в кач-ве оценки для σ² по выборке So²=∑ei²/(n-m-1), то возн-т необ-ть проверить сущ-т ли связь м/у отд-ми знач-ми ei и xi хотя бы в нашей выборке.
Естест-но если она есть, то норм распр-ие при переходе от одной т. Выборки к др б менять свое пведение.
Если же этот эф-т отсут-т, то мы м предпол-ть с нек-м ур-нем достовер-ти, что он отсут-л и в генер сов-ти. То же самое касается мат ожидания конкр значения М(εi)=0.
Обнаружение гетероскедастичности. Графический метод.
В нек-ых практич ситуациях зная хар-р данных, появление проблемы гетероск-ти м предвидеть заранее и попытаться устранить эту причину заранее, но чаще ее прих-ся решать уже после постр-я ур-ия регр-ии.