Смекни!
smekni.com

Взаимосвязи экономических перемененых (стр. 6 из 9)

Зачастую, строгую проверку м не делать. Достаточно и грубой оценки.

|tbj|≤1 – не значим

1<|tbj|≤2 – слабо значим

2<|tbj|≤3 значим

3<|tbj| - сильно значим.

Коэф-т искл-т, если |tbj|≤1

2). Проверка общего кач-ва ур-ия.

Для этого, как и в парной регр-ии, исп-ся F стат-ки.

Fкр=Fα1,υ1,υ

υ1=mυ2=n-m-1

И также, как в t стат-ке, если Fрасч>Fкр, то ур-ие сч-ся значимым.

Как б показано, 0<R²<1.

Но для того, чтобы соотнести ур-нь детермин-ии с каждым из объясн-их ф-ров, его коррет-т на число степеней свободы в исходной выборке. Вводят скоррек-й коэф-т

Т.е. в знаменателе записана несмещенная оценка общей дисп-ии независ-й перемен-й. А в числ-ле мы расс-м вел-ну, соответ-ую So²=∑ei²/(n-m-1).

В этом случае соот-ие м.б. предст-но ч/з исходное значение коэф-та детерминации:

Обычно привод-ся данные как для одного, так и для др коэф-та детерм-ии. Но абсолютизировать эти пок-ли нельзя.

Сущ-т мно-во вар-тов, когда при высоком знач-ии R² (R²→1), не б вып-ся усл-ий Гаусса-Маркова, и ур-ие окаж-ся низкого кач-ва.

Анализ статистической значимости коэффициента детерминации.

Он провер-ся по Fтат-ке. Проверка соот-т гипотезе Ho:β1=β2-…βm=0.

Если Fрасч≤Fкр, то десается вывод, что совокуп влияние всех объясн-х переем-х, исп-х в модели, не зависимую пере-ю стат-ки не значит. У ур-ия низкое кач-во.

Если же гипотеза откл-ся (Fр>Fкр), то объясненная дисп-ия разброса завис-ой переем-й соизмерима с дисп-ей, вызванной случ откл-ми. Очевидно, что R и R²=0 или ≠0 одновр-но. А это значит, что по МНК наилуч-я линяя регр-ии ỹ=yср, а => у лин не зависит от объясн-их переем-х.

В случаях парной регр-ии, проверка нулевой гипотезы для R² равносильна проверке на стат значимость t стат-к из соотношения

т.к. m=1, ar²=(rxy)²

Проверка равенства 2-х коэффициентов детерминации.

Основана на исп-ии стат-ки Фишера для проверки необх-ти включения или искл-ия в ур-ии множест регр-ии доп объян-их переем-х.

Предположим, что изнач-но построено ур-ие, содерж-ее m объясн-их переем-х:

и для него вычислим коэф-т детерм-ии R²I. Исключим из исх-ой выборки все объясняющ переем-ые, имеющие номер > чем к. Тогда, по ост выборке мы м построить др ур-ие регр-ии:

ŷ и для него опр-м R²II. Всегда R²II≤R²I, т.к. включ в модель кажд доп пере-й объясн-т еще какую-то долю ее разброса отн-но ур-ия регр-ии. Тогда нас интер-т на сколько кач-во одного ур-ия отлич-ся от кач-ва др ур-ия.

Поэтому гипотеза Но состоит в том, что коэф-ты детер-ии совпадают (кач-во одинаковое), а с ней конкур-т Н1.

R²I= R²II – кач различно.

В соответ-ии с ними рассч-ся R²стат:

, где m-k – кол-во исключ объясн-х переем-х.

Если Fрасч≤Fкр, то кач-во ур-ий приблизит одинаково, значит переем-ые исключ-ны правильно.

Если F расч>Fкр, кач-во ур-ий сущ-но разл-но, и мы не д.б.исключать эти переем-ые.

Замечание: обычно на практике не искл-ся одновр-но несколько объясн-х переем-ых. Их берут по одному и каждый раз сч-т F стат по соотн-ю:

, где k – кол-во исключ объясн-х переем-х. Как правило k =1.

При этом м искл-ть не последующие объясн переем-е, а любую, начиная с тех, у кот-ых mint стат.

Таким же образом м идти проверка целесообр-ти включения доп объясн-х переем-х в исход модель.

Допустим, что это б модель I, и мы к ней добавили Р объясн-х переем-х.

Расч-ли 3-ю модель:

и у него коэф-т детерм-ии R²III.

Тогда сч-т Fстат= (R²III-R²I)/(1-R²III) * [n-(m+p)]/p и ее проверяют по F кр Фишера.

Проверка гипотезы о совпадении уравнений 2-х различных выборок.

Это еще одно напр-ие исп-ия F-стат Фишера. Такая проверка дел-ся тестом Чоу, кот-ый сост-т в:

Пусть имеется 2 выборки объема n1 и n2. У каждой постоено свое ур-ие регр-ии

для n1

для т2.

И мы хотим проверить отл-ие

и

Тогда:

Предположим, что мы рассч-ли ∑ квадратов откл-ий для этих ур-ий

Потом по объед-й выборке (n1+n2) построим ур-ие регр-ии.

и для него также вычислим

и затем считаем Fстат, сравнивающую эти суммы квадратов откл-ий.

. Тогда Fкр=Fα. υ1=m+1 υ2=(n1+n2)-2m-2. Потому что для S мы имеем (n1+n2)-m-1 степеней свободы.

Для +

степеней свободы

= (n1+n2-2m-2).

Тогда, если Fрасч<Fкр, то мы м утвер-ть, что эти ур-ия имеют одинак ур-нь кач-ва, Но не откл-ся.

И мы м исп-ть любое из ур-ий, рассч-х по этим выборкам, т.е. выборки м.б. объединять.

Такую проверку приход-ся делать при построении дин рядов. Предположим, мы строим ур-ие парной регр-ии объмов продаж. min авто с to до t2. При этом знаем, что в t1 изменены пошлины, те.е. изм-сь институц среда.

За (to до t1) есть выборка n1 и ур-ие

.

За (t1; t2) выборка n2 и ур-ие

А потом по объед выборке строим обязат ур-ие ỹ

График.

Если Но не откл-ся, то мы реально м строить ỹ по сов-й выборке без учета институц изм-ий и исп-ть его для прогноза на ((t2-to)/3)

Проверка выполнимости предпосылок МНК.

Проверка на отсут-ие а/коррел остатков (ста-ка DW)

Стат знач-ть коэф-в ур-ия регр-ии и близость ед-цы к-та детерм-ии еще не гаран-т выс кач-во построенного ур-ия, т.к. м не вып-ся какие-то из предпосылок Гауса-Маркова.

Одной из таких предпос-к яв-ся незав-ть случ откл-ий др от др, что гаран-ся усл-ем

Послед-ая коррел-я откл-ий наз-ся а/коррел и показ-т, что если построена упорядоч-я по вр-ни (или номерами выборки) послед-ть откл-ий, то это озн-т, что или в выборке испол-ны перекрест знач-я или задан времен-й ряд, в кот-м послед-ие вел-ны генерир-ся предыд-ми. Поэтому в выкладках м исп-ся обозначеия

, т.е. откл-ия соседние по вр-ни.

В эк задачах как правило встреч-ся положит а/коррел

и очень редко возм-на отрицат.

В больш-ве случаев это связано с тем, что в модели отсут-т нек-ый ф-р, кот-ый возд-т на объясн-ую переем-ую в постоян напр-ии.

Сущность а/коррел м объяснить на след примере.

Предпол-м иссл-ся спрос У на прохлад напитки в зав-ти от дохода Х для домохоз-ва по среднемес данным. Предпол-м, что трендовая зав-ть, построен-я по этой выборке в виде ур-ия парной регр-ии.

б опис-ся нек-ой линией

График.

Но реал потреб-ие прохлад напитков безусл-но зависит от вр-ни года. Т.е. фактич-е т выборки в зав-ти от сезона года б нах-ся или все выше или все ниже линии.

Аналог картина набл-ся в макре по циклам деловой акт-ти.

Положит а/коррел озн-т, что в бол-ве случаев за положит откл-ми след-т полож, а за отриц отриц-ые, что и озн-т однонапр-ую связь м/у откл-ми – ковариация полож-на.

Среди осн-ых причин, вызыв-х наличие а/коррел обычно выд-т:

1). Ошибки специф-ии модели, т.е. не учет в модели какой-то важной объясн-й переем-й или неправ-й выбор формы зав-ти.

2).Инерция в изм-ие эк пок-лей. Многие эк пок-ли (инф-ия, безр-ца, объем ВНП) облад-т опр-й циклич-тью, связ-й с волнообр-тью.

Нап-р эк подъем приводит к росту занят-ти, сокр инф-ии, ↑ ВНП. Он продол-ся до тех пор, пока изм-ия конъюнктуры рынка и ряда др эк хар-к рынка не приведут к замедл-ию роста, затем его ост-ке и дальней-му снижению пок-лей. Но в люб случае эта трансфо-ия осущ-ся замедл-но и облад-т опр-й инерцией.

3). Эффект паутины. Во многих эк процессах и в пр-ве пок-ли реаг-т на изм-ие эк усл-ий с временным лабом.

Нап-р: предл-ие с/х прод-ии реаг-т на изм-ие цены на нее с запазд-ем = периоду до получения нов урожая.

Большая цена в прошлом году вызовет рост про-ва в этом году. Скорее всего произ-т ее перепро-во => цена ↓, в след году б исп-ны под зерновые < площадей => цена ↑ и т.д. пока не уст-ся равновесие.