А Ỹ б опр-ся как
=> е=У-Ỹ
, т.к. транспонирование озн-т, что строки стан-ся столбцами и наоборот.Но т.к. Q –нек-ое число, то каждое из выраж-й здесь также из себя предс-т число.
При трансп-ии матрица сост-ая из 1 эл-та переходит сама в себя.
Воспол-ся этим св-вом и докажем, что 2 и 3 слогаемое в выр-ии совп-т. Для этого транспон-ем любое из них.
2).
Найдем производную от этого выр-ия по любой из компонент в-ра В.
Распишем в явном виде значение для 2 и 3 выраж-ий, т.кк производ от 1-го слог-го по люб bj=0.
Тогда производ-я по люб из значений bj м.б. предст-на как эл-ты произведения
из соответ строки этой матрицы (век-ра-столбца), т.е.Рассм-м теперь последнее из слогаемых, но сначала распишем матрицу
Размер-ть 1-й (m+1)n, 2-й n(m+1)
Размер-ть итоговой (m+1)(m+1)
Полученная матрица всегда симметр-на отн-но глав диагонали, т.к. под знаком суммир-я множители м поменять местами.
Б считать, что эл-ми матрицы Z яв-ся Zij, причем, чтобы не запис-ть нулевые строку и столбец, добавленные в выборку.
Z=(Zij) i=1, m+1
j=1, m+1
Б считать, что эл-ты Z имеют индексы:
,где индекс 0 соотнес с этой добавленной строкой и столбцом.
Тогда все выраж-ие
б равноТогда при вычил-ии производ-й от такого выраж-ия каждая производ-я по bj б встреч-ся дважды: 1-й раз во внеш суммир-ии, 2-й во внутр.
Поэтому производ-й от 3-го слогаемого б рав-на:
И чтобы найти значи-я для век-ра В, мы д эту производ-ю приравнять к 0.
Общее выражение для нахождения коэф-в в ур-ях множест регрессии.
Значения для эл-тов век-ра B при m=1 и m=2получить на практике в общем матричном виде, что позволит понять принцип нахож-ия коэф-в ур-ий с люб кол-вом объясняющ перем-ых.
Но при решении задач с 2 объясняющ перем-ми (m=2) мы б польз-ся преобразован-ми знач-ми, получ-ми из общего вида m=2 в форме:
Для b2 получаем симметрично
bo – усл-ие прохождения ч/з среднюю точку выборки.
1-3 (дисп-ии откл-ий) не м.б. отрицат. 4-6 (ковариации) м.б. люб
Дисперсии и стандартные ошибки коэффициентов.
Их знание позвол-т анализ-ть точность найденных оценок коэф-в, строить их доверит интер-лы и проверять соответ-ие гипотезы.
Наиболее удобным для такой проверки знач-я дисп-ий и станд откл-ий, запис-й в матр-но-векторной форме.
Если мы запишем вектор теорет откл-ий
,введем вспомогат век-р I, состоящий из ед-ц
,то мы сможем, используя единич матрицу, записать матрицу ковариаций случ откл-ий в форме:
D(εi)=D(εj)=σ²
Исходя из этого К(ε)=σ²Е, где Е- единич матрица.
Усл-ия Гауса-Маркова б выглядеть:
1). Мε)=0
2). D(ε)=σ²I (век-р единич)
3). К(ε)=σ²Е
Рассм-м, когда знач-я для коэф-в с учетом их соотн-ия с теоретич коэф-ми из ур-ия регр-ии.
Откл-ие теорет век-ра от расчет
Построим ковариационную матрицу для теорет коэф-в, использую получ-е соот-ие.
Т.к. матрица
симметр-на относ-но глав диагонали, то обрат к ней матрица тоже симмет-на=>Кроме ε все значения яв-ся const из выборки. Поэтому множ-ли можно вынести из мат ожидания, сохранив порядок умножения.
=> для люб знач-ия коэф-та bj мы можем представить единич дисп-ию его вел-ны ч/з выбороч знач-я, зная что оценкой для σ² яв-ся
σ²→So²=∑ei²/n-m-1, а из матрицы обратной мы возьмем соответ-й эл-т с глав диаг-ли матрицы Z.
А тогда мы получ-ем возм-ть рассч-ть t-стат-ку.
При проверке гипотез отн-но коэф-в ур-ие множ регр-ии также как и для ур-ия парной регр-ии. Отличие состоит в том, что при построении доверит инт-ла отн-но завис-й перем-й у.
. Для мат ожидания →В остальном, выраж-е для доверит интер-в полностью соот-т значению доверит инт-в в ур-ях парной регр-ии.
Анализ качества эмпирических уравнений и множества линейных регрессий.
Построение эмпир ур-ия яв-ся начальным этапом эмпир анализа. 1-ое построенное Ур-ие по имеющейся выборке оч редко яв-ся удовл-м по всем хар-м. Поэтому след важнейшая задача – проверка кач-ва ур-ия.
В экономет-ке принята устоявшаяся схема такого анализа. Она провод-ся по след напр-ям:
1). Проверка стат знач-ти коэф-в рассматр-го ур-ия регр-ии.
2). Проверка общего кач-ва ур-ия.
3). Проверка св-в данных, выполнимость кот-ых предназначалась при оценивании ур-ий, т.е. это проверка усл-ий Гауса-Маркова.
1). Проверка стат знач-ти коэф-в рассматр-го ур-ия регр-ии.
Как и в парных ур-иях, эта проверка дел-ся на основе t-статистик.
Т.е. рассч-ся tbj=|bj/Sbj|.
И если |tbj|>tкр, то коэф-т сч-ся значимым.
Если |tbj|<tкр, коэф-т не значим, т.е. он стат-ки близок к нулю. Это значит, что фактор xj прак-ки не связан линейно с завис переменной.
Его присут-ие в ур-ии неоправданно со стат т.зр., и он м лишь искажать реальн картину взаимосвязей. Поэтому рекоменд-ся такие ф=ры из ур-ия исключать.