Смекни!
smekni.com

по Эконометрике 3 (стр. 5 из 11)

6. Тесноту выявленной зависимости розничного товарооборота от инвестиций в экономику региона и от численности населения оценивают множественный коэффициент корреляции и детерминации. Расчёт коэффициента корреляции выполним, используя известные значения линейных коэффициентов парной корреляции и β – коэффициентов:

В нашем случае 2-х факторной зависимости расчёт строится следующим образом:

Как показали расчёты, установлена весьма тесная зависимость розничного товарооборота от первого и третьего фактора. Это означает, что 92,2% вариации розничного товарооборота определены вариацией данных факторов. Оставшиеся 7,8% вариации результата сформировались под влиянием прочих причин, роль которых незначительна.
7.
Оценка статистической значимости или надёжности установленной формы зависимости, её параметров, оценок её силы и тесноты является важным этапом анализа результатов. Для выполнения оценки формулируется нулевая гипотеза, которая рассматривает предположение о случайной природе полученных результатов. То есть

Для проверки выдвинутой нулевой гипотезы используется F-критерия Фишера. Его фактическое значение определяется, исходя из соотношения факторной и остаточной дисперсий и их степеней свободы: d.f.1=k и d.f.2=n-k-1; где: n –число изучаемых единиц; k – число ограничений, которые накладываются на исходные данные при расчёте данного показателя. Здесь k равно числу факторов уравнения, то есть k=2.

В нашем случае, когда рассматривается зависимость результата от двух факторов, расчёт выглядит следующим образом:

Фактическое значение критерия показывает, что детерминация, сформированная под воздействием двух изучаемых факторов, почти в 30 раз больше, чем детерминация, связанная с действием прочих причин. Очевидно, что подобное соотношение случайно сформироваться не может, а является результатом влияния существенных, систематических факторов.
Для принятия обоснованного решения Fфактич. сравнивается с Fтабл., которое формируется случайно и зависит степеней свободы факторной (d.f.1 = k) и остаточной (d.f.2 = n-k-1) дисперсий, а также от уровня значимости α=0,05. В нашем примере, где d.f.1=k= 2 и d.f.2=n-k-1 = 8-2-1=5 при α=0,05 Fтабл = 5,79. В силу того, что Fфактич. =29,551> Fтабл. = 5,79, можно с высокой степенью надёжности отклонить нулевую гипотезу, а в качестве альтернативы – согласиться с утверждением, что проверяемые параметры множественной регрессионной модели неслучайны, что коэффициенты уравнения и показатели тесноты связи не являются случайными величинами.

8. Техническая часть прогнозных расчётов по уравнению множественной регрессии сравнительно проста. Достаточно определить прогнозные значения каждого факторного признака

, подставить их в уравнение и выполнить с ними расчёт прогнозного значения результата -
. При этом следует помнить, что требования к точности и надёжности прогноза предъявляют к используемой модели повышенные требования. В нашем случае, прогнозное значение каждого из факторов, то есть
и
, получено на основе средней величины:

После подстановки в уравнение получаем следующий результат:

(млрд. руб.)

Если кредиты, предоставленные в 2000 году предприятиям, организациям, банкам и физическим лицам возрастут до 0,232 млрд. руб., а годовой доход всего населения составит 26,789 млрд. руб., тогда следует ожидать, что розничный товарооборот возрастёт до 14,615 млрд. руб., то есть увеличится на 7,2% от своего среднего уровня.

Задача №3.

Для проверки рабочих гипотез (№1 и №2) о связи социально-экономических показателей в регионе используется статистическая информация за 2000 год по территориям Центрального федерального округа.

Y1 – среднегодовая стоимость основных фондов в экономике, млрд. руб.;

Y2 – стоимость валового регионального продукта, млрд. руб.;

X1 – инвестиции прошлого, 1999, года в основной капитал, млрд. руб.;

X2 – кредиты прошлого, 1999, года, предоставленные предприятиям, организациям, банкам и физическим лицам, млрд. руб.

X3 – среднегодовая численность занятых в экономике, млн. чел.

Рабочие гипотезы:

Предварительный анализ исходных данных по 18 территориям выявил наличие трёх территорий (г. Москва, Московская обл., Воронежская обл.) с аномальными значениями признаков. Эти единицы должны быть исключены из дальнейшего анализа. Значения приводимых показателей рассчитаны без учёта указанных аномальных единиц.

При обработке исходных данных получены следующие значения линейных коэффициентов парной корреляции, средних и средних квадратических отклонений -σ:

N=15.

Для проверки рабочей гипотезы №1. Для проверки рабочей гипотезы №2.

Y1

X1

X2

Y2

X3

Y1

1

0,6631

0,7477

Y2

1

0,7863

0,7337

X1

0,6631

1

0,4747

0,7863

1

0,6177

X2

0,7477

0,4747

1

X3

0,7337

0,6177

1

Средняя

115,83

0,1615

3,75

Средняя

23,77

115,83

0,570

30,0303

0,1400

1,6836

7,2743

30,0303

0,1160

Задание:

1. Составьте систему уравнений в соответствии с выдвинутыми рабочими гипотезами.

2. Определите вид уравнений и системы.

3. На основе приведённых в условии значений матриц коэффициентов парной корреляции, средних и средних квадратических отклонений:

- определите бета коэффициенты (b) и постройте уравнения множественной регрессии в стандартизованном масштабе;

- дайте сравнительную оценку силы влияния факторов на результат;

- рассчитайте параметры a1, a2 и a0 уравнений множественной регрессии в естественной форме;

- с помощью коэффициентов парной корреляции и b коэффициентов рассчитайте для каждого уравнения линейный коэффициент множественной корреляции (R) и детерминации (R2);

- оцените с помощью F-критерия Фишера статистическую надёжность выявленных связей.

4. Выводы оформите краткой аналитической запиской.

Решение:

1.В соответствии с выдвинутыми рабочими гипотезами о связи признаков составим систему уравнений. Коэффициенты при эндогенных переменных обозначим через b , коэффициенты при экзогенных переменных - через a. Каждый коэффициент имеет двойную индексацию: первый индекс – номер уравнения, второй – индивидуальный номер признака. Тогда: