4. Расчёт параметров уравнения регрессии даёт следующие результаты:
; .
В конечном счёте, получаем теоретическое уравнение регрессии следующего вида:
В уравнении коэффициент регрессии а1 = 39,565 означает, что при увеличении среднегодовой численности занятых в экономике на 1 млн. чел. (от своей средней) валовой региональный продукт возрастёт на 39,565 млрд. руб. (от своей средней).
Свободный член уравнения а0 = -1,491 оценивает влияние прочих факторов, оказывающих воздействие на валовой региональный продукт.
Относительную оценку силы связи даёт общий (средний) коэффициент эластичности:
5. Относительную оценку силы связи даёт общий (средний) коэффициент эластичности:
Это означает, что при изменении среднегодовой численности занятых в экономике на 1% от своей средней валовой региональный продукт увеличивается на 1,073 процента от своей средней.
6. Для оценки тесноты связи рассчитаем линейный коэффициент парной корреляции:
Коэффициент корреляции, равный 0,9687, показывает, что выявлена весьма тесная зависимость между среднегодовой численностью занятых в экономике и валовым региональным продуктом. Коэффициент детерминации, равный 0,9384, устанавливает, что вариация валового регионального продукта на 93,84% из 100% предопределена вариацией среднегодовой численности занятых в экономике; роль прочих факторов, влияющих на розничный товарооборот, определяется в 6,16%, что является сравнительно небольшой величиной.
7. Для оценки статистической надёжности выявленной зависимости дохода от доли занятых рассчитаем фактическое значение F-критерия Фишера – Fфактич. и сравним его с табличным значением – Fтабл.. По результатам сравнения примем решения по нулевой гипотезе , то есть, либо примем, либо отклоним её с вероятностью допустить ошибку, которая не превысит 5% (или с уровнем значимости α=0,05).
В нашем случае,
Где k -число факторов в уравнении; n - число изучаемых объектов. Фактическое значение критерия показывает, что факторная вариация результата в 137 раза больше остаточной вариации, сформировавшейся под влиянием случайных причин. Очевидно, что подобные различия не могут быть случайными, а являются результатом систематического взаимодействия оборота розничной торговли и общей суммы доходов населения. Для обоснованного вывода сравним полученный результат с табличным значением критерия: при степенях свободы d.f.1=k=1 и d.f.2=n-k-1=11-1-1=9 и уровне значимости α=0,05.
В силу того, что нулевую гипотезу о статистической не значимости выявленной зависимости валового регионального продукта от среднегодовой численности занятых в экономике и её параметрах можно отклонить с фактической вероятностью допустить ошибку значительно меньшей, чем традиционные 5%.
Определим теоретические значения результата Yтеор. Для этого в полученное уравнение последовательно подставим фактические значения фактора X и выполним расчёт.
Например,
. См. гр. 5 расчётной таблицы. По парам значений Yтеор. и Xфакт. строится теоретическая линия регрессии, которая пересечётся с эмпирической регрессией в нескольких точках. См. график 1.9. Построим теоретическую линю регрессии, которая пересечётся с эмпирической регрессией в нескольких точках.
В нашем случае, скорректированная ошибка аппроксимации составляет 15,776%. Она указывает на невысокое качество построенной линейной модели и ограничивает её использование для выполнения точных прогнозных расчётов даже при условии сравнительно небольшого изменения фактора X (относительно его среднего значения ).
Зависимость ВРП от численности занятых
График№1
Оценку качества модели дадим с помощью скорректированной средней ошибки аппроксимации:
В нашем случае, скорректированная ошибка аппроксимации составляет 15,776%. Она указывает на невысокое качество построенной линейной модели и ограничивает её использование для выполнения точных прогнозных расчётов даже при условии сравнительно небольшого изменения фактора X (относительно его среднего значения ).
Построение логарифмической функции предполагает предварительное выполнение процедуры линеаризации исходных переменных. В данном случае, для преобразования нелинейной функции в линейную введём новую переменную, которая линейно связана с результатом. Следовательно, для определения параметров модели будут использованы традиционные расчётные приёмы, основанные на значениях определителей второго порядка.
Построение логарифмической функции предполагает предварительное выполнение процедуры линеаризации исходных переменных. В данном случае, для преобразования нелинейной функции
в линейную введём новую переменную , которая линейно связана с результатом. Следовательно, для определения параметров модели будут использованы традиционные расчётные приёмы, основанные на значениях определителей второго порядка. См. таблицу №4.