Смекни!
smekni.com

Производственная функция и технологическая результативность производства (стр. 3 из 6)

3.1. Средний и предельный продукты

Вклад трудового фактора в производственный процесс можно описать с помо­щью понятий среднего и предельного продуктов труда. Четвертый столбец табл. 3.2 показывает средний продукт труда APL, который представляет собой количество выпущенной продукции, приходящееся на единицу затрат труда. Средний продукт рассчитывается делением совокупного объема выпуска Q на совокупные затраты труда L, т. е. как Q/L. В вышеуказанном примере средний продукт сначала растет, а затем начинает снижаться, когда затраты труда превышают 4.

В пятом столбце указан предельный продукт труда МРL . Это дополнительная продукция, полученная за счет увеличения затрат труда на одну единицу. На­пример, при постоянном капитале в 10 единиц увеличение затрат труда с 2 до 3 единиц приводит к росту совокупного объема выпуска с 30 до 60, создавая до­полнительную продукцию в количестве 30 (60 - 30) единиц. Предельный про­дукт труда можно обозначить как Q/∆L (т. е. изменение выпуска Q в резуль­тате увеличения затрат труда /∆L на одну единицу).

Отметим, что предельный продукт труда зависит от количества исполь­зуемого капитала. Если затраты капитала возрастут, например с 10 до 20, то вполне вероятно, что предельный продукт труда увеличится. Причина этого в том, что дополнительные рабочие, скорее всего, трудятся более производи­тельно, если в их распоряжении больше капитала. Подобно среднему про­дукту, предельный продукт сначала увеличивается, а затем снижается, однако в этом случае он начинает снижаться, как только затраты труда превышают 3 единицы.

Таким образом, можно сделать следующие выводы:

Средний продукт труда =

Предельный продукт =

На рис. 3.2 графически представлена информация, содержащаяся в табл. 3.2 .

Выпуск в месяц

Труд в месяц

Рис. 3.2. Производство с одним переменным фактором.


Рисунок 3.2,а по­казывает, что объем выпуска растет, пока не достигает максимума в 112 единиц, и после этого снижается. Эта часть кривой совокупного выпуска продукции обозначена пунктиром, чтобы показать, что производство при затратах труда более 8 единиц технологически неэффективно и, следовательно, не является частью производственной функции; технологическая эффективность исклю­чает возможность отрицательного предельного продукта. На рис. 3.2,б показа­ны кривые среднего и предельного продуктов. (Для кривой предельного про­дукта по оси ординат отложен не совокупный объем выпуска, как указано на рисунке, а объем на единицу затрат труда.) Заметим, что предельный продукт всегда положителен при увеличении выпуска продукции и отрицателен при его снижении.

Кривая предельного продукта пересекает на графике горизонтальную ось в точке максимума совокупного продукта не случайно. Это происходит потому, что добавление одного рабочего на производственный конвейер в нашем случае замедляет работу конвейера и снижает совокупный объем выпуска, что делает предельный продукт этого рабочего отрицательным.

Кривые среднего и предельного продуктов тесно связаны между собой. Когда предельный продукт больше среднего, средний продукт увеличивается, как это происходит при затратах в интервале между 1 и 4 на рис. 3.2,б.

Аналогичным образом, когда предельный продукт меньше среднего, средний продукт должен снижаться, как показано на рис. 3.2,б для интервала затрат между 4 и 10.

Поскольку предельный продукт больше среднего, когда тот увеличивается, и ниже, когда тот убывает, он должен быть равен среднему продукту, когда по­следний достигает своего максимума, как показано на рис. 3.2,б в точке Е.

Графически взаимосвязь между совокупным продуктом и кривыми среднего и предельного продуктов показана на рис. 3.2,а. Средний продукт труда пред­ставляет собой совокупный продукт, деленный на количество труда. Например, в точке В средний продукт равен объему выпуска 60, деленному на 3 единицы труда, т. е. 20 единицам выпускаемой продукции на единицу труда. Но это есть не что иное, как угловой коэффициент наклона прямой, проведенной из начала координат в точку В на рис. 3.2,а.

В общем случае средний продукт труда зада­ется угловым коэффициентом (тангенсом угла наклона) прямой, проведенной из начала координат в соответствующую точку на кривой совокупного выпуска продукции.

Предельный продукт труда представляет собой изменение совокупного про­дукта при увеличении затрат труда на единицу. Например, в точке А предель­ный продукт равен 20 единицам, потому что угловой коэффициент касательной к кривой выпуска продукции равен 20. В общем случае предельный продукт труда в какой-либо точке равен угловому коэффициенту касательной к кривой совокупного выпуска продукции в этой точке.

На рис. 3.2,а можно увидеть, что предельный продукт труда сначала возрастает, достигает пика при затратах, равных 3 единицам труда, а затем снижается по мере движения вдоль кривой к точкам С и D. В точке D, когда совокупный объем выпуска максимален, наклон касательной к кривой совокупного выпуска продукции равен 0, так же как и предельный продукт. После этой точки предельный продукт становится отри­цательным.

Отметим графическую связь между средним и предельным продуктами. В точке В предельный продукт труда (угловой коэффициент касательной к кривой совокупного выпуска продукции в точке В — на рисунке он не показан) больше среднего продукта (пунктирная линия ОВ). В результате средний продукт труда увеличивается по мере продвижения из В в С. В точке С средний и предельный продукты труда равны — средний продукт определяется как угловой коэффи­циент прямой ОС, а предельный продукт— как угловой коэффициент касатель­ной к кривой совокупного выпуска продукции в точке С. Наконец, при движении из С в D предельный продукт меньше среднего продукта труда; угловой коэффициент касательной к кривой совокупного объема выпуска в любой точке между С и D меньше углового коэффициента прямой, соединяющей начало координат и эту точку.

3.2. Закон убывающей производительности.

Тенденция к сокращению предельного продукта труда (и предельного продукта других факторов) действует в большинстве производственных процессов. Для описа­ния этого явления часто используется “закон убывающей производительности”.

Закон убывающей производительности гласит, что при по­следовательном увеличении любого производственного фактора на единицу (и при постоянстве остальных факторов) приросты объемов выпуска начиная с некоторого момента уменьшаются. Когда затраты труда малы (и капитал по­стоянен), небольшой прирост затрат труда существенно увеличивает выпуск продукции, так как рабочие получают возможность дополнительной специали­зации. Однако, в конце концов, вступает в силу закон убывающей производи­тельности. Когда рабочих становится слишком много, некоторые из них исполь­зуются неэффективно и предельный продукт труда снижается.

Закон убывающей производительности обычно выполняется в краткосроч­ном периоде, когда, по меньшей мере, один фактор постоянен. Но его можно использовать и для долгосрочного периода. Даже если в долгосрочном периоде все факторы производства изменяются, у управляющего компанией может воз­никнуть необходимость рассмотреть бизнес-планы, в которых один или не­сколько факторов фиксированы. Предположим, например, что существуют только два возможных размера завода и управляющий должен выбрать, какой завод построить. В этом случае ему необходимо узнать, когда начнет действо­вать закон убывающей производительности в каждом из вариантов. [18]

Закон убывающей производительности действует при любой заданной тех­нологии производства. Со временем, однако, изобретения и другие технологиче­ские усовершенствования могут привести к тому, что кривая совокупного вы­пуска продукции (рис. 3.2,а) сместится вверх и. таким образом, большего объема выпуска можно добиться при тех же самых факторах. Рисунок 3.3 иллюстрирует такую возможность. Первоначальная кривая выпуска продукции — О1, но усо­вершенствование в технологии вызывает ее смещение вверх, сначала в положе­ние О2, а затем О3.