Отличительной чертой временных данных является то, что они естественным образом упорядочены по времени, кроме того наблюдения в близкие моменты времени часто бывают зависимыми.
Процесс эконометрического моделирования происходит в течение нескольких этапов. В основе первого этапа статистического изучения связей лежит качественный анализ явления, связанный с анализом его природы методами экономической теории, социологии, конкретной экономики. Второй этап – построение модели связи. Он базируется на методах статистики: группировки, средних величин, таблиц и т.д. Третий этап – интерпретация результатов. Он вновь связан с качественными особенностями изучаемого явления.
Существует множество методов изучения связей, выбор конкретного из которых зависит от цели исследования и от поставленной задачи. Связи между признаками и явлениями классифицируются по ряду оснований. Признаки по их значению для изучения взаимосвязи делятся на два класса:
1. Факторные (факторы) – это признаки, обусловливающие изменение других, связанных с ними признаков.
2. Результативные – это признаки, изменяющиеся под действием факторных признаков.
Связи между явлениями и их признаками классифицируются по степени тесноты, по направлению (выделяют прямую и обратную связь), по аналитическому выражению (выделяют прямолинейные – или просто линейные – и нелинейные - или криволинейные).
Для выявления наличия связи, ее характера и направления используются следующие методы: метод приведения параллельных данных (основан на сопоставлении двух или нескольких рядов статистических величин, что позволяет установить наличие связи и получить представление о ее характере), аналитических группировок, графический, корреляции и регрессии.
Парная регрессия – уравнение связи двух переменных y и x:
где y – зависимая переменная (результативный признак);
x – независимая, объясняющая переменная (признак-фактор).
Различают линейные и нелинейные регрессии. Линейная регрессия:y=a+bx+e.Нелинейные регрессии делятся на два класса: регрессии, нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам, и регрессии, нелинейные по оцениваемым параметрам.
Регрессии, нелинейные по объясняющим переменным:
· полиномы разных степеней y=a+b1x+b2x2+b3x3+e;
· равносторонняя гипербола
.Регрессии, нелинейные по оцениваемым параметрам:
· степенная y=a×xb×e;
· показательная y=a×bx×e;
· экспоненциальная y=ea+b×x×e.
Построение уравнения регрессии сводится к оценке ее параметров. Для оценки параметров регрессий, линейных по параметрам, используют метод наименьших квадратов (МНК). МНК позволяет получить такие оценки параметров, при которых сумма квадратов отклонений фактических значений результативного признака y от теоретических
минимальна, т.е. .Для линейных и нелинейных уравнений, приводимых к линейным, решается следующая система относительно a и b:
Можно воспользоваться готовыми формулами, которые вытекают из этой системы:
Тесноту связи изучаемых явлений оценивает линейный коэффициент парной корреляции rxyдля линейной регрессии (-1£rxy£1):
и индекс корреляции ρxy– для линейной регрессии (0£ρxy£1):
Оценку качества построенной модели даст коэффициент (индекс) детерминации, а также средняя ошибка аппроксимации.
Средняя ошибка аппроксимации – среднее отклонение расчетных значений от фактических:
Допустимый предел значений – не более 8-10%.Средний коэффициент эластичности
показывает, на сколько процентов в среднем по совокупности изменится результат yот своей средней величины при изменении фактора x на 1% от своего среднего значения:Задача дисперсионного анализа состоит в анализе дисперсии зависимой переменной:
где
- общая сумма квадратов отклонений; - сумма квадратов отклонений, обусловленная регрессией («объясненная» или «факторная»); - остаточная сумма квадратов отклонений.Долю дисперсии, объясняемую регрессией, в общей дисперсии результативного признака yхарактеризует коэффициент (индекс) детерминацииR2:
Коэффициент детерминации – квадрат коэффициента или индекса корреляции.
F-тест – оценивание качества уравнения регрессии – состоит в проверке гипотезы H0о статистической незначимости уравнения регрессии и показателя тесноты связи. Для этого выполняется сравнение фактического Fфакт и критического (табличного) Fтаблзначений F-критерия Фишера. Fфакт определяется из соотношения значений факторной и остаточной дисперсий, рассчитанных на одну степень свободы:
где n – число единиц совокупности; m – число параметров при переменныхx.
Fтабл– это максимально возможное значение критерия под влиянием случайных факторов при данных степенях свободы и уровне значимости a. Уровень значимости a – вероятность отвергнуть правильную гипотезу при условии, что она верна. Обычно aпринимается равной 0,05 или 0,01.
Если Fтабл<Fфакт, то H0– гипотеза о случайной природе оцениваемых характеристик отклоняется и признается их статистическая значимость и надежность. Если Fтабл>Fфакт, то H0– гипотеза не отклоняется и признается статистическая незначимость, надежность уравнения регрессии.
Для оценки статистической значимости коэффициентов регрессии и корреляции рассчитываются t-критерий Стьюдента и доверительные интервалы каждого из показателей. Выдвигается гипотеза H0 о случайной природе показателей, т.е. о незначимом их отличии от нуля. Оценка значимости коэффициентов регрессии и корреляции с помощью t-критерия Стьюдента проводится путем сопоставления их значений с величиной случайной ошибки:
Случайные ошибки параметров линейной регрессии и коэффициента корреляции определяются по формулам:
Если tтабл<tфак, то H0 отклоняется, т.е. a,b и rxy не случайно отличаются от нуля и сформировались под влиянием систематически действующего фактора x. Если tтабл>tфак, гипотеза H0 не отклоняется и признается случайная природа формирования a,b или rxy.
Для расчета доверительного интервала определяем предельную ошибкуD для каждого показателя: