На первом этапе фирма определяет возможный объем продаж, издержки производства, массу прибыли па основе принятого критерия и исчисляет цену единицы товара.
На втором этапе на основе имеющейся функции спроса по цене фирма прорабатывает различные тактики продаж путем анализа различных комбинаций "цепа - объем продаж" и выбирает ту, которая обеспечивает ей наибольшую сумму прибыли.
На третьем этапе фирма производит оценку прочности положения своего товара на рынке путем выявления его преимуществ или недостатков по технико-экономическим параметрам в сравнении с товарами-конкурентами. Оценка конкурентоспособности продукции производится параметрическими методами.
На четвертом этапе фирма вновь прорабатывает различные комбинации "цена — объем продаж", но уже с учетом конкурентных факторов. Выбирается та комбинация, которая обеспечивает максимальную прибыль и вписывается в систему рыночных цен.
Статистическая теория игр и ее применение при принятии решений по ценам. Статистическая теория игр предполагает обоснование оптимальных решений по ценам в конкурентных ситуациях. Например, предприятие производит товар и знает, что он подвержен быстрому изменению моды. Если своевременно не продать товар, то в будущем возникнут затруднения с его реализацией. Поэтому предприятие может принять решение о снижении цен, чтобы вызвать дополнительный спрос на данный товар. Причем решение о размере снижения цен при сезонной распродаже товаров должно быть продуманным и принести предприятию минимум потерь.
Может рассматриваться несколько вариантов снижения цены на определенный товар (на 20,30,40 и 50 %). При этом должна учитываться предполагаемая реакция покупателей на сезонное снижение цен, которая измеряется эластичностью спроса от цены. На основе коэффициентов эластичности можно сделать вывод о степени возрастания спроса на товар при снижении цен на него.
В данном случае целесообразно проводить также опрос покупателей, который позволяет выяснить, при каком размере снижения цен покупатели могли бы произвести покупку.
По данным статистики цена на чай «Хелс» с 2003 по 2010 года составляет:
2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | Год |
5,872 | 5,918 | 5,966 | 6,010 | 6,037 | 6,061 | 6,066 | 6,053 | Тыс. руб |
Строим поле корреляции.
Определим виды кривых в большей степени соответствующих динамике изменения численности работоспособного населения. Делаем вывод, что это могут быть следующие виды кривых: линейная, гиперболическая 1-го типа, логарифмическая и обратнологарифмическая.
Для расчёта параметров aи bиспользуются формулы:
- соответствует количеству наблюдений (в данном случае их 8); - фактическая численность работоспособного населения.Строим вспомогательную таблицу для расчета параметров линейной модели.
Годы | |||||||
2003 | 1 | 5,872 | 1 | 5,872 | 5,9 | 0,000784 | 0,015872 |
2004 | 2 | 5,918 | 4 | 11,836 | 5,928 | 0,0001 | 0,0064 |
2005 | 3 | 5,966 | 9 | 17,898 | 5,956 | 0,0001 | 0,001024 |
2006 | 4 | 6,010 | 16 | 24,04 | 5,984 | 0,000676 | 0,000144 |
2007 | 5 | 6,037 | 25 | 30,185 | 6,012 | 0,000625 | 0,001521 |
2008 | 6 | 6,061 | 36 | 36,366 | 6,04 | 0,000441 | 0,003969 |
2009 | 7 | 6,066 | 49 | 42,462 | 6,068 | 0,0000004 | 0,004624 |
2010 | 8 | 6,053 | 64 | 48,424 | 6,096 | 0,001849 | 0,003025 |
Итого: | 36 | 47,983 | 204 | 217,083 | 0,004579 | 0,036579 |
Таким образом уравнение линейной трендовой корреляционной модели имеет вид:
Ценность полученной модели найдём с помощью корреляционного отношения:
В нашем случае:
Полученное корреляционное отношение достаточно высокое, поэтому трендовую корреляционную модель можно использовать для прогнозирования. Прогноз изменения численности работоспособного населения на 3 ближайших года:
Уравнение кривой имеет вид:
Для расчёта параметров aи bиспользуются формулы:
Строим вспомогательную таблицу для расчета параметров гиперболической модели 1-го порядка.
Годы | |||||||
2003 | 1 | 5,872 | 1 | 5,872 | 5,846 | 0,000676 | 0,015872 |
2004 | 0,5 | 5,918 | 0,250 | 2,959 | 5,961 | 0,00185 | 0,0064 |
2005 | 0,333 | 5,966 | 0,111 | 1,987 | 5,999 | 0,00109 | 0,001024 |
2006 | 0,250 | 6,010 | 0,063 | 1,503 | 6,0185 | 0,00007 | 0,000144 |
2007 | 0,200 | 6,037 | 0,040 | 1,207 | 6,03 | 0,00005 | 0,001521 |
2008 | 0,167 | 6,061 | 0,028 | 1,012 | 6,038 | 0,00053 | 0,003969 |
2009 | 0,143 | 6,066 | 0,020 | 0,867 | 6,046 | 0,00053 | 0,004624 |
2010 | 0,125 | 6,053 | 0,016 | 0,757 | 6,047 | 0,00004 | 0,003025 |
Итого: | 2,718 | 47,983 | 1,528 | 16,164 | 0,00484 | 0,036579 |
Полученное корреляционное отношение достаточно высокое, поэтому трендовую корреляционную модель можно использовать для прогнозирования. Прогноз изменения численности работоспособного населения на 3 ближайших года:
Уравнение кривой имеет вид:
Для расчёта параметров aи bиспользуются формулы: