Полезно также иметь в виду основные черты природного углеродного цикла (следить за углеродом удобнее, чем за его соединениями типа углекислого газа из-за химических превращений). Вообще говоря, в атмосфере содержится примерно 750 гигатонн (Гт) углерода (здесь и далее величины даны для периода 1980-1989 гг.), при этом обмен атмосферы с сушей (растительность, почва) составляет около 60 Гт/год и с океаном около 90 Гт/год, то есть довольно интенсивен. Казалось бы, ежегодная антропогенная эмиссия, составляющая всего около 7.1 ± 1.1 Гт/год (5.5 ± 0.5 Гт/год только из-за сжигания угля и нефти и производства цемента), при таком интенсивном обмене могла бы быть легко поглощена, например океаном (где уже содержится около 40000 Гт углерода). Однако - и это является установленным фактом - обмен атмосфера - суша и атмосфера - океан весьма инерционен и соответствующие скорости абсорбции СОз могут меняться лишь довольно медленно (за столетия). Кроме того, в отличие от метана, озона и других газов, углекислый газ не вступает в химические атмосферные реакции, могущие эффективно выводить его из атмосферы. Иначе говоря, природная "фабрика" по утилизации атмосферного углекислого газа не может быстро наращивать свои мощности, что и приводит к накоплению углерода (СО2) в атмосфере (в указанный период в атмосфере ежегодно оставалось около 3.2 Гт углерода). Поэтому, как показывают модели углеродного цикла[28], накопившийся в атмосфере "лишний" СО2 приведет к установлению концентрации углекислого газа на новом, более высоком уровне, причем снижающемся крайне медленно (в течение многих столетий), даже при полном прекращении антропогенной эмиссии. Значит, возможно воздействовать на ситуацию только на стадии накопления СО2, а снижения его установившейся концентрации можно будет добиться только если срочно принять меры по ограничению выбросов в атмосферу.
Однако введение любых таких ограничений требует весьма существенных (а зачастую и весьма дорогостоящих) перестроек в экономике. Так, наиболее "безопасный" (но вообще говоря мало реальный) из сценариев, рассмотренных IPCC (1592 с), в котором установившаяся концентрация равна 350 ppmv, предполагает, что дальнейшее удовлетворение растущих энергетических потребностей человечества будет происходить в основном за счет ядерной энергетики (в развитых странах), а рост энергетических потребностей в развивающихся странах будет незначительным. Но такая перспектива не слишком реальна.
Возникает естественный вопрос: насколько опасны возможные изменения климата при том или ином сценарии развития глобальной экономики и каков безопасный уровень установившейся концентрации СО2? Очевидно, только ответив на эти вопросы, можно обоснованно выбрать стратегию по предотвращению возможных негативных последствий изменения климата. К сожалению, определенность существующих климатических прогнозов оставляет желать лучшего. Так, имеющиеся оценки увеличения среднеглобальной температуры и повышения уровня океана при удвоении содержания СО2 в атмосфере дают разброс в 1.5-4.5°С и 30-140 см, соответственно[29]. Иначе говоря, по одним оценкам климат почти не изменится, а по другим - может произойти чуть ли не климатическая катастрофа.
В свою очередь неудовлетворительная надежность климатических прогнозов обусловлена сложностью описания процессов переноса солнечной и тепловой энергии в атмосфере и моделирования обратных связей в системе атмосфера-суша-океан. Так, поглощение солнечной и тепловой радиации в ИК области имеет очень сложную зависимость от энергии, так как определяется колебательно-вращательными ИК-спектрами поглощения молекул водяного пара, углекислого газа, озона и др. (при моделировании радиационных процессов требуется учесть несколько десятков мегабайт информации о нескольких сотнях тысяч спектральных линий газов). Большие трудности представляет и моделирование переноса солнечной энергии в облачной атмосфере из-за весьма неоднородной структуры облаков. Недавно было установлено, что существующие радиационные блоки климатических моделей (программы, где вычисляются параметры атмосферного радиационного теплообмена) могут давать рассогласование в расчетах потоков атмосферной радиации в десятки процентов, тогда как изменения в потоках при удвоении СО2 - всего порядка одного процента[30]. В результате чисто научная проблема моделирования атмосферных радиационных процессов сдерживает решение важнейших практических проблем, имеющих общечеловеческую значимость.
Однако в последнее время, наконец, были освоены более адекватные методы теоретического исследования переноса атмосферной радиации[31]. Кроме того, бурно развиваются экспериментальные исследования в этой области, в том числе с использованием спутников. В этой связи особо следует отметить американскую программу экспериментально-теоретических исследований атмосферной радиации ARM (AtmosphericRadiationMeasurements)[32]. В рамках этой программы на специальных полигонах проводятся уникальные натурные эксперименты по измерениям атмосферной радиации в различных климатических зонах. Все это позволяет надеяться на получение качественно новых методик радиационных расчетов, обладающих достаточной точностью для целей прогнозирования климатических изменений уже в ближайшее десятилетие.
Очень важно также правильно учесть многочисленные обратные связи в климатической системе. Например, дополнительный разогрев атмосферы из-за парникового эффекта вызовет увеличение испарения воды и приведет к еще большему разогреву вследствие поглощения радиации водяным паром. Кроме того, рост испарения приведет к увеличению облачности. Это, с одной стороны, будет способствовать охлаждению атмосферы из-за отражения солнечной радиации облаками, а с другой - усилит разогрев вследствие экранирования тепловой радиации. (По этим причинам, как хорошо известно, в летний, ясный, солнечный день теплее, чем в пасмурный, тогда как при отсутствии облаков ночи холоднее.) В целом, как показывают расчеты, "изначальный" парниковый эффект по причине подобных обратных связей будет увеличиваться в несколько раз. Неизвестен лишь точный коэффициент такого увеличения.
Для кардинального улучшения климатических прогнозов в настоящее время развернуты широкомасштабные разработки в рамках Всемирной программы исследования климата ("WorldClimateResearchProgramme") и Международной геосферно-биосферной программы ("InternationalGeosphere-BiosphereProgramme"). Все это также позволяет надеяться на существенное улучшение климатических прогнозов в самом ближайшем будущем.
Однако уже сейчас существует возможность сравнивать различные факторы воздействия на климат с помощью понятия "радиационного форсинга" (radiactiveforcing). Опуская некоторые подробности, можно определить радиационный форсинг как характерное изменение потоков радиации из-за данного фактора, измеряемое в Вт/м2 (см. табл. 1).
Таблица 1. Радиационные форсинги (в Вт/м2) на настоящий момент в сравнении с серединой прошлого века от наиболее существенных климатообразующих факторов
CO2 | СН4 | N2O, фреоны | Озон | Аэрозоли | Солнечная радиация |
1.5 | 0.5 | 0.5 | 0.5 | -1.0 | 0.3 |
Источник: по данным IPCC. |
Как следует из этой таблицы, суммарный форсинг в настоящий момент составил около 2 Вт/м2, причем форсинг от увеличения СО2 доминирует. Как полагают многие специалисты по климату, это уже привело к увеличению среднеглобальной температуры примерно на 0.5°. Полезно также отметить, что форсинг от удвоения СО2 должен быть около 4.5 Вт/м2, то есть будет уже в несколько раз превышать все другие форсинги. Это хорошо иллюстрирует широко распространенное мнение о начале существенных климатических изменений и необходимости принятия безотлагательных мер по стабилизации климата.
ЭКОНОМИЧЕСКИЕ ПОСЛЕДСТВИЯ ИЗМЕНЕНИЯ КЛИМАТА
Из-за отмеченной выше существенной неопределенности климатических прогнозов все оценки возможных экономических последствий потепления климата также крайне неопределенны, но, по мнению авторов, все же полезны при достаточно осторожном с ними обращении. Здесь мы будем опираться в основном на результаты исследований IPCC[33].
Для упрощения анализа обычно рассматриваются гипотетические ситуации при среднеглобальном увеличении температуры на 2.5 и 4°, что отвечает изменению климата при удвоении СО2 и реализации "наиболее вероятного" и "близкого к наиболее неблагоприятному" прогнозу климата соответственно. (Напомним, что такой климат может быть уже в ближайшие десятилетия.) Кратко опишем возможные последствия потепления на различные секторы экономики.
IPCCотмечает, что вследствие потепления возможный ущерб может возникнуть из-за уменьшения увлажнения почвы, увеличения количества вредителей растений и животных, а также вследствие стрессовых воздействий жары. Кроме того, в одних регионах может возрасти эрозия почвы по причине увеличения дождей, тогда как в других усилятся засухи.
Модели предсказывают, что в ряде регионов средних широт (например США) число засушливых лет может возрасти с 5% в настоящее время до 50 к 2050 г. Однако отмечаются и возможные положительные эффекты для экономики. Так, станет больше период времени, благоприятный для роста растений. Кроме того, ожидается увеличение урожаев при росте концентрации СО2 из-за известного стимулирующего действия углекислого газа на фотосинтез растений. Согласно лабораторным экспериментам, удвоение концентрации СО2 может на 1/3 увеличить урожайность риса, сои и других культур.