Смекни!
smekni.com

Классификация систем массового обслуживания и их основные элементы (стр. 5 из 7)

так как бесконечная сумма, стоящая в квадратных скобках, сходится только при условии, что

(14)

то при этом предположении находим равенство

(15)

Если условие (14) не выполнено, т.е. если

, то ряд, стоящий в квадратнойскобке уравнения для определения
, расходится и, значит,
должно быть равно 0. Но при этом, как следует из (12) и (13), при всех
оказывается
.

Методы теории цепей Маркова позволяют заключить, что при

с течением времени очередь стремится к
по ве­роятности.

Поясним полученный результат на нескольких практических примерах, которые покажут, что обычные в практической деятельности подсчеты, основанные на чисто арифметических соображениях, при которых не учитывается специфика случайных колебаний в поступлении требованийна обслуживание, приводят к серьезным просчетам.

Пусть врач успевает удовлетворительно осмотреть больного и заполнить его историю болезни в среднем за 15 минут. Планирующие органы из этого обычно делают вывод: за четырёхчасовый рабочий день врач должен принимать 16 человек. Однако больные приходят в случайные моменты времени. В ре­зультате при таком подсчете пропускной способности врача к нему неизбежно скапливается очередь, так как при проведен­ном подсчете

принимается равным 1. Теже заключения от­носятся и к расчету числа коек в больницах, числа работа­ющих касс в магазинах, числа официантов в ресторанах и т. д. К сожалению, некоторые экономисты совершают такую же ошибкуи при расчете погрузочных средств в карьерах, числе приемщиков на элеваторах, числе причалов в морских портах и пр.

Во всем дальнейшем мы предполагаем, что условие (14) выполнено.

5. Некоторые подготовительные результаты.

Для задачи с ожиданием основной характеристикой качества обслуживания является длительность ожидания требованием начала обслуживания. Длительность ожидания представляет собой случайную величину, которую обозначим буквой

. Рассмотрим сейчас только задачу опреде­ления распределения вероятностей длительности ожидания в уже установившемся процессе обслуживания. Обозначим далее через
вероятность того, что длительность ожидания превзойдёт t, и через
вероятность неравенства, указанного в скобке при условии, что в момент поступления требования, для которого подсчитывается длительность ожидания, в очереди уже находится k требований. В силу формулы полной вероятности имеем равенство

(16)

Прежде чем преобразовать эту формулу к виду, удобному для использования, приготовим некоторые необходимые для дальнейшего сведения. Прежде всего для случаев m=1 и m=2 найдем простые формулы для

. Несложные преобразования приводят к таким равенствам: приm=1

=1-
, (17)

а при m=2

(18)

Вычислим теперь вероятность того, что все приборы будут заняты в какой-то наудачу взятый момент. Очевидно, что эта вероятность равна

(19)

Эта формула для m=1 принимает особенно простой вид:

(20)

при m=2

(21)

В формуле (19)

может принимать любое значение от 0 до m(исключительно). Так что в формуле (20)
< 1, а в (21)
<2.

6. Определение функции распределения длительности ожи­дания.

Если в момент поступления требования в очереди уже находилисьk-m требований, то, поскольку обслуживание про­исходит в порядке очередности, вновь поступившее требование должно ожидать, когда будут обслуженыk-m+1 требований. Пусть

означает вероятность того, что за промежуток вре­мени длительностиt после поступления интересующего тре­бования закончилось обслуживание ровно s требований. Ясно, что при
имеет место равенство

Так как распределение длительности обслуживания предположено показательным и не зависящим ни от того, сколько требований находится в очереди, ни от того, как велики длительности обслуживания других требований, то вероятность за время t не завершить ни одного обслуживания (т.е. вероятность того, что не освободится ни один из приборов) равна

Если все приборызаняты обслуживанием и ещё имеется достаточная очередь требований, которые ожидают обслуживания, то поток обслуженных требований будет простейшим. Действи­тельно, в этом случае все три условия — стационарность, отсут­ствие последействия и ординарность — выполнены. Вероятность освобождения за промежуток времениt ровноs приборов равна (это можно показать и простым подсчетом)

Итак,

и, следовательно,

Но вероятности

известны:

поэтому

Очевидными преобразованиями приводим правую часть по­следнего равенства к виду

=

.

Из формул (18) и (19) следует, что

поэтому при m
0

(22)

Само собой разумеется, что при t

0

Функция

имеет в точке t=1 разрыв непрерывности, равный вероятности застать все приборы занятыми.