Смекни!
smekni.com

Классификация систем массового обслуживания и их основные элементы (стр. 2 из 7)

Теорема (А.Я.Хинчин) Если входящий поток представляет собой сумму большого числа независимых между собой стационарных и ординар­ных потоков, каждый из которых вносит малый вклад в общую сумму, то при одном дополнительном условии аналитического характера (которое обычно выполняется на практике) поток близок к простейшему.

Применение этой теоремы на практике можно продемонстрировать, на следующем примере: поток судов дальнего плавания в данный грузовой порт, связанный со многими портами мира, можно считать близким к простейшему. Это дает нам право считать поток прибытия судов в порт распределенным согласно процесса Пуассона.

Крометогî, наличие пуассоновского потока требований можно оп­ределить статистической обработкой данных о поступлении требований на обслуживание. Одним из признаков закона распределения Пуассона является равенство математического ожидания случайной величины и дисперсии этой же величины, т.е.

Одной из важнейших характеристик обслуживающих устройств, кото­рая определяет пропускную способность всей системы, является время обслуживания.

Время обслуживания одного требования(

)- случайная величина, которая может изменятся в большом диапазоне. Она зависит от стабиль­ности работы самих обслуживающих устройств, так и от различных пара­метров, поступающих в систему, требований (к примеру, различной гру­зоподъемности транспортных средств, поступающих под погрузку или вы­грузку) .

Случайная величина

полностью характеризуется законом распре­деления, который определяется на основе статистических испытаний.

На практике чаще всего принимают гипотезу о показательном законе распределения времени обслуживания.

Показательный закон распределения времени обслуживания имеет место тогда, когда плотность распределения резко убывает с возраста­нием времени t. Например, когда основная масса требований обслужива­ется быстро, а продолжительное обслуживание встречается редко. Нали­чие показательного закона распределения времени обслуживания уста­навливается на основе статистических наблюдений.

При показательном законе распределения времени обслуживания ве­роятность

события, что время обслуживания продлиться не более чем t, равна:

гдеv - интенсивность обслуживания одного требования одним об­служивающим устройством, которая определяется из соотношения:

, (1)

где

- среднее время обслуживания одного требования одним об­служивающим устройством.

Следует заметить, что если закон распределения времени обслужи­вания показательный, то при наличии нескольких обслуживающих уст­ройств одинаковой мощности закон распределения времени обслуживания несколькими устройствами будет также показательным:

где n - количество обслуживающих устройств.

Важным параметром СМО является коэффициент загрузки

, который определяется как отношение интенсивности поступления требований

к интенсивности обслуживания v.

(2)

гдеa - коэффициент загрузки;

- интенсивность поступления тре­бований в систему; v - интенсивность обслуживания одного требования одним обслуживающим устройством.

Из (1) и (2) получаем, что

Учитывая, что

- интенсивность поступления требований в систему

в единицу времени, произведение

показывает количество требова­ний, поступающих в систему обслуживания за среднее время обслужива­ния одного требования одним устройством.

Для СМО с ожиданием количество обслуживаемых устройств п должно быть строго больше коэффициента загрузки (требование установившегосяили стационарного режима работы СМО) :

.

В противном случае число поступающих требований будет больше суммар­ной производительности всех обслуживающих устройств, и очередь будет неограниченно расти.

Для СМО с отказами и смешанного типа это условие может быть ос­лаблено, для эффективной работы этих типов СМО достаточно потребо­вать, чтобы минимальное количество обслуживаемых устройств n было не меньше коэффициента загрузки

:

Раздел ІІ.Обслуживание с ожиданием

1. Постановка задачи.

СМО с ожиданием распространены наиболее широко. Их можно разбить на 2 большие группы - разомкнутые и замкнутые. Эти системы определяют так же, как системы с ограниченным входящим потоком.

К замкнутым относятся системы, в которых поступающий поток требований ограничен. Например, мастер, задачей которого является наладка станков в цехе, должен периодически их обслуживать. Каждый налаженный станок становится в будущем потенциальным источником требований на подналадку.

В подобных системах общее число циркулирующих требований конечно и чаще всего постоянно.

Если питающий источник обладает бесконечным числом требований, то системы называются разомкнутыми. Примерами подобных систем могут служить магазины, кассы вокзалов, портов и др. Для этих систем поступающий поток требований можно считать неограниченным.

Мы рассмотрим здесь классическую задачу теории массового обслуживания в тех условиях, в каких она была рассмотрена и решена К.Эрлангом. на n одинаковых приборов поступает простейший поток требований интенсивности

. Если в момент поступления имеется хотя бы один свободный прибор, оно немедленно начинает обслуживаться. Если же все приборы заняты, то вновь прибывшее требование становится в очередь за всеми теми требованиями, которые поступили раньше и ещё не начали обслуживаться. Освободившийся прибор немедленно приступает к обслуживанию очередного требования, если только имеется очередь. Каждое требование обслуживается только одним прибором, и каждый прибор обслуживает в каждый момент времени не более одного требования. Длительность обслуживания представляет собой случайную величину с одним и тем же распределением вероятностей F(x). Предполагается, что при x
0.

где

- постоянная.

Только что описанная задача представляет значительный прикладной интерес, и результаты, с которыми мы познакомимся, широко используются для практических целей. Реальных ситуаций, в которых возникают подобные вопросы, исключительно много. Эрлангрешил эту задачу, имея в виду постановки вопросов, возникших к тому времени в телефонном деле.

Выбор распределения (1) для описания длительности обслу­живания произведенне случайно. Дело в том, что в этом предположении задача допускает простоерешение, которое с удовлетворительной дляпрактики точностью описывает ход интересующего нас процесса.Распределение (1) иг­рает в теории массового обслуживания исключительную роль, которая в значительной мере вызвана следующим его свойством:

При показательном распределении длительности обслужива­ния распределение длительности оставшейся части работы по обслуживанию не зависит от того, сколько оно уже продолжалось.