Теорема (А.Я.Хинчин) Если входящий поток представляет собой сумму большого числа независимых между собой стационарных и ординарных потоков, каждый из которых вносит малый вклад в общую сумму, то при одном дополнительном условии аналитического характера (которое обычно выполняется на практике) поток близок к простейшему.
Применение этой теоремы на практике можно продемонстрировать, на следующем примере: поток судов дальнего плавания в данный грузовой порт, связанный со многими портами мира, можно считать близким к простейшему. Это дает нам право считать поток прибытия судов в порт распределенным согласно процесса Пуассона.
Крометогî, наличие пуассоновского потока требований можно определить статистической обработкой данных о поступлении требований на обслуживание. Одним из признаков закона распределения Пуассона является равенство математического ожидания случайной величины и дисперсии этой же величины, т.е.
Одной из важнейших характеристик обслуживающих устройств, которая определяет пропускную способность всей системы, является время обслуживания.
Время обслуживания одного требования( )- случайная величина, которая может изменятся в большом диапазоне. Она зависит от стабильности работы самих обслуживающих устройств, так и от различных параметров, поступающих в систему, требований (к примеру, различной грузоподъемности транспортных средств, поступающих под погрузку или выгрузку) .
Случайная величина полностью характеризуется законом распределения, который определяется на основе статистических испытаний.
На практике чаще всего принимают гипотезу о показательном законе распределения времени обслуживания.
Показательный закон распределения времени обслуживания имеет место тогда, когда плотность распределения резко убывает с возрастанием времени t. Например, когда основная масса требований обслуживается быстро, а продолжительное обслуживание встречается редко. Наличие показательного закона распределения времени обслуживания устанавливается на основе статистических наблюдений.
При показательном законе распределения времени обслуживания вероятность
события, что время обслуживания продлиться не более чем t, равна:гдеv - интенсивность обслуживания одного требования одним обслуживающим устройством, которая определяется из соотношения:
, (1)где
- среднее время обслуживания одного требования одним обслуживающим устройством.Следует заметить, что если закон распределения времени обслуживания показательный, то при наличии нескольких обслуживающих устройств одинаковой мощности закон распределения времени обслуживания несколькими устройствами будет также показательным:
где n - количество обслуживающих устройств.
Важным параметром СМО является коэффициент загрузки , который определяется как отношение интенсивности поступления требований
к интенсивности обслуживания v. (2)гдеa - коэффициент загрузки;
- интенсивность поступления требований в систему; v - интенсивность обслуживания одного требования одним обслуживающим устройством.Из (1) и (2) получаем, что
Учитывая, что
- интенсивность поступления требований в системув единицу времени, произведение
показывает количество требований, поступающих в систему обслуживания за среднее время обслуживания одного требования одним устройством.Для СМО с ожиданием количество обслуживаемых устройств п должно быть строго больше коэффициента загрузки (требование установившегосяили стационарного режима работы СМО) :
.В противном случае число поступающих требований будет больше суммарной производительности всех обслуживающих устройств, и очередь будет неограниченно расти.
Для СМО с отказами и смешанного типа это условие может быть ослаблено, для эффективной работы этих типов СМО достаточно потребовать, чтобы минимальное количество обслуживаемых устройств n было не меньше коэффициента загрузки
:Раздел ІІ.Обслуживание с ожиданием
1. Постановка задачи.
СМО с ожиданием распространены наиболее широко. Их можно разбить на 2 большие группы - разомкнутые и замкнутые. Эти системы определяют так же, как системы с ограниченным входящим потоком.
К замкнутым относятся системы, в которых поступающий поток требований ограничен. Например, мастер, задачей которого является наладка станков в цехе, должен периодически их обслуживать. Каждый налаженный станок становится в будущем потенциальным источником требований на подналадку.
В подобных системах общее число циркулирующих требований конечно и чаще всего постоянно.
Если питающий источник обладает бесконечным числом требований, то системы называются разомкнутыми. Примерами подобных систем могут служить магазины, кассы вокзалов, портов и др. Для этих систем поступающий поток требований можно считать неограниченным.
Мы рассмотрим здесь классическую задачу теории массового обслуживания в тех условиях, в каких она была рассмотрена и решена К.Эрлангом. на n одинаковых приборов поступает простейший поток требований интенсивности
. Если в момент поступления имеется хотя бы один свободный прибор, оно немедленно начинает обслуживаться. Если же все приборы заняты, то вновь прибывшее требование становится в очередь за всеми теми требованиями, которые поступили раньше и ещё не начали обслуживаться. Освободившийся прибор немедленно приступает к обслуживанию очередного требования, если только имеется очередь. Каждое требование обслуживается только одним прибором, и каждый прибор обслуживает в каждый момент времени не более одного требования. Длительность обслуживания представляет собой случайную величину с одним и тем же распределением вероятностей F(x). Предполагается, что при x 0.где
- постоянная.Только что описанная задача представляет значительный прикладной интерес, и результаты, с которыми мы познакомимся, широко используются для практических целей. Реальных ситуаций, в которых возникают подобные вопросы, исключительно много. Эрлангрешил эту задачу, имея в виду постановки вопросов, возникших к тому времени в телефонном деле.
Выбор распределения (1) для описания длительности обслуживания произведенне случайно. Дело в том, что в этом предположении задача допускает простоерешение, которое с удовлетворительной дляпрактики точностью описывает ход интересующего нас процесса.Распределение (1) играет в теории массового обслуживания исключительную роль, которая в значительной мере вызвана следующим его свойством:
При показательном распределении длительности обслуживания распределение длительности оставшейся части работы по обслуживанию не зависит от того, сколько оно уже продолжалось.