Смекни!
smekni.com

Оптимизационные модели межотраслевого баланса (стр. 5 из 6)

Из задачи, двойственной к (32), следует, что для способов, вошедших в оптимальный план

, выполняются условия

Поэтому вектор оптимальных оценок продукции V* = (

), характеризующих минимально необходимый прирост трудовых затрат в народном хозяйстве при увеличении конечной продукции, определяется решением системы уравнений

V* = V* A* + t* или V* = t* (A – V*)–1.

Видим, что оптимальные оценки продукции в рассматриваемой модели равны коэффициентам полных трудовых затрат, исчислен­ным по лучшим производственным способам для каждого вида про­дукции.

Следствие. Оптимальные оценки

не изменяются при любых изменениях положительного вектора Y0.

При неизменных коэффициентах производственных способов оптимальные оценки меняются только при изменении базиса оп­тимального плана. Теорема 2 доказывает, что в модели (32) базис оптимального плана остается постоянным при любых изменениях вектора Y0 в положительной области, следовательно, не изме­няются и оптимальные оценки[1].

Постоянство оценок

облегчает их использование в различных планово-экономических расчетах, в частности, при корректировке вектора Y0.

Второй вариант модели (максимизация конечной продукции в заданном ассортименте при ограниченных трудовых ресурсах).

Рассмотрим другую возможную постановку межотраслевой мо­дели с производственными способами: произвести максимальное число комплектов конечной продукции при ограниченных трудо­вых ресурсах:

(33)

Нетрудно установить, что модели (32) и (33) являются взаимным. В первой модели фиксируются

и минимизируются затраты труда, а во второй модели максимизи­руются z при фиксированном ресурсе труда.

Отсюда следует, что если z0 = max z или

, то в

соответствии с теоремой взаимности оптимальные планы задач совпадают, трудовые ре­сурсы используются полностью, а оптимальные оценки продукции пропорциональны. Сохраняются и все свойства оптимального плана и оптимальных оценок модели (32):

· в оптимальном плане производятся все продукты и каждый про­дукт производится только одним способом (для этого должно вы­полняться одно из условий: либо матрица способов неразло­жима, либо все

);

· выбор лучших способов и оптимальные оценки не зависят от заданий по конечной продукции (ассортиментных коэффициентов);

· не производится «излишков» конечной продукции.

Отметим важное новое свойство: набор производственных спо­собов в оптимальном плане и значения оптимальных оценок не зависят от величины имеющегося ресурса. Действительно, по­скольку L есть единственная отличная от нуля компонента вектора ограничений задачи, то изменение L означает растяжение или сжа­тие вектора ограничений. Но такое преобразование не влияет на базис оптимального плана.

Вектор объемов производства выражается через матрицы ко­эффициентов полных затрат, сформированных из «лучших» спосо­бов:

Х = (Е – A*)–1αz = β*z, (34)

где β* = (Е – А*)–1α вектор потребностей в выпуске продукции для получения одного комплекта конечной продукции.

Максимальное число комплектов z* находится из равенства t*(EA*)–1αz = τ*z = L, откуда

(35)

где τ* = t* (Е – А*)–1α полные трудовые затраты для получе­ния одного комплекта конечной продукции.

Подстановка (35) в (34) дает

(36)

т. е. максимальное число комплектов и объемы производства прямо пропорциональны количеству имеющихся трудовых ресурсов. Оптимальная оценка трудовых ресурсов

является постоянной величиной.

В рассматриваемой модели условия максимизации конечной продукции могут быть сформулированы так же, как в моделях (1), (24), (27). С учетом данного уточнения приходим к модели:

(37)

Отмеченные выше свойства оптимального плана и оптимальных оценок полностью сохраняются. Однако решение задачи (37) су­ществует не всегда, так как наличных трудовых ресурсов может быть недостаточно для выполнения чрезмерно высоких заданий qi.

Варианты модели с различными условиями максимизации конечной продукции.

Из теоремы 2 следует, что изменение объемов и структуры ко­нечной продукции (при сохранении Y ≥ 0) не оказывает никакого влияния на выбор лучших производственных способов. Это позво­ляет расчленить процесс оптимизационных расчетов и анализа оптимальных решений на три стадии:

· нахождение лучших производственных способов и минималь­ных затрат труда при заданном векторе конечной продукции на основе модели (32);

· определение объемов и структуры переменной части конечной продукции (можно использовать различные критерии и условия максимизации);

· расчет сбалансированного плана производства, обеспечиваю­щего выпуск всей конечной продукции при ограниченных трудовых ресурсах.

В качестве примера рассмотрим модель, включающую условия максимизации переменной части конечной продукции в виде ЦФП:

Решив задачу (32) с Y0 = Q, определим матрицу А*, а также вектор оптимальных оценок продукции, равных коэффициентам полных затрат, исчисленным по лучшим производственным спосо­бам, V* = Т*, а также потребности в трудовых ресурсах для обес­печения постоянной части конечной продукции T*Q и остаток тру­довых ресурсов для выпуска переменной части конечной продукции

.

На второй стадии решается задача максимизации ЦФП при ограниченных трудовых ресурсах:

(38)

Решение задачи (38) дает вектор

.

Следует обратить внимание на интересный результат, характе­ризующий соотношения предельных полезных эффектов продукции и затрат труда на ее производство. В соответствии с условиями Куна – Таккера

(39)

Таким образом, в оптимальном плане рассматриваемой модели предельные полезные эффекты используемой конечной продукции пропорциональны общественно необходимым затратам труда на производство продукции. Оптимальные оценки продукции в модели (32) равны коэффициентам полных трудовых затрат, исчисленным по лучшим производственным способам, и являются постоянными величинами. Они оказывают влияние на выбор оп­тимальной структуры конечной продукции (вектора

); эта струк­тура «подбирается» так, чтобы отношения (39) выровнялись по всем используемым видам конечной продукции. Но выбор струк­туры конечной продукции не оказывает никакого влияния на зна­чения оптимальных оценок продукции.

На третьей стадии расчетов по модели находим вектор объемов производства

; он будет сбалансирован с имеющимися трудовыми ресурсами.

Аналогичным образом проводятся расчеты по модели, вклю­чающей другие возможные критерии и условия максимизации ко­нечной продукции.

Таким образом, анализировавшиеся в данном параграфе опти­мизационные межотраслевые модели характеризуются двумя спе­цифическими свойствами. Во-первых, в оптимальный план вклю­чается только по одному способу для каждого производимого вида продукции независимо от того, какое количество способов вводится в условия задачи. Во-вторых, объемы и структура используемой конечной продукции не оказывают никакого влияния на выбор производственных способов и определение общественно необходи­мых затрат на производство продукции.

Хотя выявленные свойства создают значительные удобства при проведении оптимизационных расчетов и анализе оптимальных решений, они не являются адекватным отражением свойств реаль­ной экономики. Данные свойства моделей обусловлены тем, что выбор производственных способов осуществляется с позиций наи­более эффективного использования только одного ограниченного ресурса – труда. Решения, получаемые с помощью рассматривае­мых моделей, должны интерпретироваться как условно-оптималь­ные, т. е. получаемые в предположении, что трудовые ресурсы яв­ляются единственным дефицитным ресурсом в народном хозяйстве. Эти условно-оптимальные решения должны затем корректироваться с учетом использования других ограниченных ресурсов.