Из задачи, двойственной к (32), следует, что для способов, вошедших в оптимальный план
, выполняются условияПоэтому вектор оптимальных оценок продукции V* = (
), характеризующих минимально необходимый прирост трудовых затрат в народном хозяйстве при увеличении конечной продукции, определяется решением системы уравненийV* = V* A* + t* или V* = t* (A – V*)–1.
Видим, что оптимальные оценки продукции в рассматриваемой модели равны коэффициентам полных трудовых затрат, исчисленным по лучшим производственным способам для каждого вида продукции.
Следствие. Оптимальные оценки
не изменяются при любых изменениях положительного вектора Y0.При неизменных коэффициентах производственных способов оптимальные оценки меняются только при изменении базиса оптимального плана. Теорема 2 доказывает, что в модели (32) базис оптимального плана остается постоянным при любых изменениях вектора Y0 в положительной области, следовательно, не изменяются и оптимальные оценки[1].
Постоянство оценок
облегчает их использование в различных планово-экономических расчетах, в частности, при корректировке вектора Y0.Рассмотрим другую возможную постановку межотраслевой модели с производственными способами: произвести максимальное число комплектов конечной продукции при ограниченных трудовых ресурсах:
(33)
Нетрудно установить, что модели (32) и (33) являются взаимным. В первой модели фиксируются
и минимизируются затраты труда, а во второй модели максимизируются z при фиксированном ресурсе труда.Отсюда следует, что если z0 = max z или
, то всоответствии с теоремой взаимности оптимальные планы задач совпадают, трудовые ресурсы используются полностью, а оптимальные оценки продукции пропорциональны. Сохраняются и все свойства оптимального плана и оптимальных оценок модели (32):
· в оптимальном плане производятся все продукты и каждый продукт производится только одним способом (для этого должно выполняться одно из условий: либо матрица способов неразложима, либо все
);· выбор лучших способов и оптимальные оценки не зависят от заданий по конечной продукции (ассортиментных коэффициентов);
· не производится «излишков» конечной продукции.
Отметим важное новое свойство: набор производственных способов в оптимальном плане и значения оптимальных оценок не зависят от величины имеющегося ресурса. Действительно, поскольку L есть единственная отличная от нуля компонента вектора ограничений задачи, то изменение L означает растяжение или сжатие вектора ограничений. Но такое преобразование не влияет на базис оптимального плана.
Вектор объемов производства выражается через матрицы коэффициентов полных затрат, сформированных из «лучших» способов:
Х = (Е – A*)–1αz = β*z, (34)
где β* = (Е – А*)–1α – вектор потребностей в выпуске продукции для получения одного комплекта конечной продукции.
Максимальное число комплектов z* находится из равенства t*(E – A*)–1αz = τ*z = L, откуда
(35)где τ* = t* (Е – А*)–1α – полные трудовые затраты для получения одного комплекта конечной продукции.
Подстановка (35) в (34) дает
(36)
т. е. максимальное число комплектов и объемы производства прямо пропорциональны количеству имеющихся трудовых ресурсов. Оптимальная оценка трудовых ресурсов
является постоянной величиной.В рассматриваемой модели условия максимизации конечной продукции могут быть сформулированы так же, как в моделях (1), (24), (27). С учетом данного уточнения приходим к модели:
(37)
Отмеченные выше свойства оптимального плана и оптимальных оценок полностью сохраняются. Однако решение задачи (37) существует не всегда, так как наличных трудовых ресурсов может быть недостаточно для выполнения чрезмерно высоких заданий qi.
Варианты модели с различными условиями максимизации конечной продукции.
Из теоремы 2 следует, что изменение объемов и структуры конечной продукции (при сохранении Y ≥ 0) не оказывает никакого влияния на выбор лучших производственных способов. Это позволяет расчленить процесс оптимизационных расчетов и анализа оптимальных решений на три стадии:
· нахождение лучших производственных способов и минимальных затрат труда при заданном векторе конечной продукции на основе модели (32);
· определение объемов и структуры переменной части конечной продукции (можно использовать различные критерии и условия максимизации);
· расчет сбалансированного плана производства, обеспечивающего выпуск всей конечной продукции при ограниченных трудовых ресурсах.
В качестве примера рассмотрим модель, включающую условия максимизации переменной части конечной продукции в виде ЦФП:
Решив задачу (32) с Y0 = Q, определим матрицу А*, а также вектор оптимальных оценок продукции, равных коэффициентам полных затрат, исчисленным по лучшим производственным способам, V* = Т*, а также потребности в трудовых ресурсах для обеспечения постоянной части конечной продукции T*Q и остаток трудовых ресурсов для выпуска переменной части конечной продукции
.На второй стадии решается задача максимизации ЦФП при ограниченных трудовых ресурсах:
(38)Решение задачи (38) дает вектор
.Следует обратить внимание на интересный результат, характеризующий соотношения предельных полезных эффектов продукции и затрат труда на ее производство. В соответствии с условиями Куна – Таккера
(39)Таким образом, в оптимальном плане рассматриваемой модели предельные полезные эффекты используемой конечной продукции пропорциональны общественно необходимым затратам труда на производство продукции. Оптимальные оценки продукции в модели (32) равны коэффициентам полных трудовых затрат, исчисленным по лучшим производственным способам, и являются постоянными величинами. Они оказывают влияние на выбор оптимальной структуры конечной продукции (вектора
); эта структура «подбирается» так, чтобы отношения (39) выровнялись по всем используемым видам конечной продукции. Но выбор структуры конечной продукции не оказывает никакого влияния на значения оптимальных оценок продукции.На третьей стадии расчетов по модели находим вектор объемов производства
; он будет сбалансирован с имеющимися трудовыми ресурсами.Аналогичным образом проводятся расчеты по модели, включающей другие возможные критерии и условия максимизации конечной продукции.
Таким образом, анализировавшиеся в данном параграфе оптимизационные межотраслевые модели характеризуются двумя специфическими свойствами. Во-первых, в оптимальный план включается только по одному способу для каждого производимого вида продукции независимо от того, какое количество способов вводится в условия задачи. Во-вторых, объемы и структура используемой конечной продукции не оказывают никакого влияния на выбор производственных способов и определение общественно необходимых затрат на производство продукции.
Хотя выявленные свойства создают значительные удобства при проведении оптимизационных расчетов и анализе оптимальных решений, они не являются адекватным отражением свойств реальной экономики. Данные свойства моделей обусловлены тем, что выбор производственных способов осуществляется с позиций наиболее эффективного использования только одного ограниченного ресурса – труда. Решения, получаемые с помощью рассматриваемых моделей, должны интерпретироваться как условно-оптимальные, т. е. получаемые в предположении, что трудовые ресурсы являются единственным дефицитным ресурсом в народном хозяйстве. Эти условно-оптимальные решения должны затем корректироваться с учетом использования других ограниченных ресурсов.