Смекни!
smekni.com

Двухкритериальные модели управления портфельными инвестициями с учетом риска (стр. 2 из 5)

Публикации

По теме диссертации опубликовано 9 работ общим объемом 3,8 п.л., из них одна работа опубликована в журнале, входящем в список ВАК.

Структура работы

Диссертация состоит из введения, трех глав, заключения и библиографии, включающей 78 наименований отечественной и зарубежной литературы. Объем работы составляет 129 страниц, включая 35 таблиц и 12 рисунков.

Содержание работы

Во введении обоснована актуальность темы диссертационной работы, сформулирована цель и необходимые для ее достижения задачи, определены объект и предмет исследования, оценена степень разработанности проблемы, а также научная новизна полученных результатов.

В первой главе диссертации «Теоретические основы портфельных инвестиций» структурированы основополагающие элементы процесса формирования портфеля ценных бумаг: даны определение и классификация инвестиций по их видам, рассмотрены основные характеристики инвестиций, систематизированы типы инвестиционных портфелей и цели их формирования.

Инвестициями считаются денежные средства, ценные бумаги и иное имущество, в том числе имущественные права, иные права, имеющие денежную оценку, вкладываемые в объекты предпринимательской деятельности в целях получения прибыли или иного полезного эффекта. В работе инвестиционные портфели классифицированы по признакам: цель формирования портфеля и отношение к инвестиционным рискам. Отмечено, что основными типами портфелей являются: агрессивный портфель дохода, агрессивный портфель роста, умеренный портфель дохода, умеренный портфель роста, консервативный портфель дохода, консервативный портфель роста.

Каждый из этих портфелей отвечает определенным стратегиям инвестора и соответствующим им критериям. В частности, агрессивный портфель дохода (роста) представляет собой инвестиционный портфель, сформированный по критерию максимизации текущего дохода или прироста инвестированного капитала вне зависимости от сопутствующего ему уровня инвестиционного риска.

В работе рассмотрены классические методы и модели формирования инвестиционного портфеля с использованием предпосылок теории Г. Марковица, основанной на статистическом подходе при оценке показателей эффективности и ограничений по доходности и риску и ее модификации, предложенной в работе У. Шарпа в рамках однофакторной модели рынка капиталов использующей «бета» коэффициенты ценных бумаг. Эти коэффициенты задают количественную оценку риска по каждому виду ценных бумаг и определяются как отношение ковариации между доходностью ценной бумаги и доходностью рыночного портфеля к дисперсии рыночного портфеля.

В диссертации также показано, что альтернативным подходом к управлению портфельными инвестициями является использование предпосылок фрактальной теории, согласно которой эффективный рынок – это волатильный рынок и стремление к равновесию не является необходимым условием его функционирования. Отражающие это предположение динамические модели, как правило, имеют вид стохастических дифференциальных уравнений. Сложность их построения, нахождения оптимального решения и процедур анализа результатов в настоящее время затрудняет использование фрактальных моделей на практике.

Результаты анализа рассмотренных теорий и подходов свидетельствуют о том, что их использование на фондовых рынках, включая российский, в прямом виде затруднено вследствии ряда особенностей современных финансовых рынков. На фондовых рынках продажа акции обычно осуществляется партиями определенного объема (лотами), а дробление акций во многих случаях невозможно. Это приводит к необходимости учета при формировании портфеля свойства дискретности исходных данных, которое в РФ также является следствием довольно высокой стоимости акций определенных компаний для российских инвесторов - физических лиц (обыкновенная акция Сбербанка в начале 2007 года стоила около 90 тыс. рублей). Инвестиционные активы таких инвесторов чаще всего не превышают нескольких сотен тысяч рублей. В этой ситуации, использование непрерывных моделей формирования эффективного портфеля, обычно приводит к необходимости округления полученного непрерывного решения до целочисленных значений, следствием чего является либо потеря его эффективности, либо выход за границы допустимой области его существования.

Вместе с тем в научной литературе вопросы формирования инвестиционных портфелей с целочислительными пакетами практически не рассматривались за исключением случая безрискового портфеля, который обычно формируется только при работе с государственными ценными бумагами.

Во второй главе диссертации «Целочисленные модели управления портфельными инвестициями» рассмотрены подходы к разработке моделей и методов оптимизации структуры портфеля в условиях ограниченных инвестиционных ресурсов при условии покупки различного вида акций партиями фиксированного объема.

В качестве критериев оценки эффективности формирования портфеля в работе использованы доходность портфеля и инвестиционный риск.

Автором разработаны целочисленные модификации моделей формирования инвестиционных портфелей: ценовой модели рынка капиталов (САРМ) и модели Марковица. При формировании целочисленной модели САРМ использовались следующие предположения.

Рассматривается умеренный инвестиционный портфель дохода и известен перечень лотов, в которые входят ценные бумаги одного вида, объем которых (количество акций каждого вида) задан числами V1, V2, …Vn. Известна начальная стоимость каждой акции αiв момент времени t=0 и вероятностное распределение будущей стоимости акций каждого вида в момент времени t= T (i = 1,2,…,n).

Предполагается, что заданы, так называемые, Я коэффициенты, выражающие количественную оценку риска по каждому виду ценных бумаг. В этих условиях инвестор, обладая ограниченным объемом инвестиционных ресурсов F, хотел бы приобрести те лоты, продав которые в момент времени t=T, он получит максимальный ожидаемый прирост финансовых ресурсов ΔF.

При условии, что будущая стоимость i-го актива задается распределением γ1i ,…, γmic вероятностями р1,…, pm, математическое ожидание будущей стоимости i-го актива есть величина

.

Оптимизационная задача определения инвестиционного портфеля с учетом выше приведенных предположений может быть сформулирована следующим образом:

, (1)

, (2)

, (3)

;
, (4)

где

- число лотов, в которые входят ценные бумаги вида i.

Задача (1)-(4) является целочисленной задачей линейного программирования (I – множество целых чисел), в которой неравенство (3) задает приемлемый риск портфеля.

Целочисленная модификация модели оптимизации портфеля Г. Марковица, учитывающая ограничения на объемы Vi (i=1,…,n) лотов приобретаемых ценных бумаг с критерием риска, выраженным через дисперсию портфеля, соответствует классической постановке задачи.

Обозначим долю финансовых ресурсов, затраченных на приобретение лота Vi, через

. Тогда модификация модели Марковица с критерием на минимум риска с учетом целочисленных переменных может быть представлена в следующем виде:

, (5)

, (6)

, (7)

;
(8)

где

- множество лотов, в которые входят ценные бумаги вида i;

ΔF задает минимально необходимый прирост инвестиционных ресурсов, определяемый инвестором при реализации активов портфеля в момент времени t=T. Значения covij вычисляются как попарные ковариации актива i и актива j (i=1,…,n; j=1,…n; i≠j), вычисляемые на основе вероятностного распределения доходности этих активов.

В работе предложен метод ветвей и границ для решения задач (1)-(4) и (5)-(8), заключающийся в вычислении верхней и нижней оценки решения оптимизационной задачи на первом этапе и дальнейшем анализе формируемых допустимых портфелей с использованием результатов эффективности вычисления так называемых текущих верхних (текущих нижних) оценок. Неудовлетворительное значение этих оценок в процессе формирования рассматриваемого варианта допустимого портфеля прерывает дальнейший анализ его эффективности, что позволяет существенно сократить полный перебор всех вариантов.

В работе рассмотрены подходы к формированию инвестиционного портфеля с критериями на максимум ожидаемой доходности и ограничениям на уровень риска с использованием авторской модификации целочисленной модели Марковица. С учетом использованных ранее обозначений задач (4) - (8), эта модификация может быть представлена в следующем виде:

, (9)

, (10)