GDP=90.71828168+0.8758556601 Cons+1.190895181 IG(2)
После округления оно будет иметь следующий вид:
(3)Построенная модель имеет очень высокий коэффициент детерминации, что говорит о высоком качестве этой модели. Высокие значения имеют t-статистики, соответственно все объясняющие переменные данной модели значимы. Верны и коэффициенты при переменных, то есть они имеют верный знак и значение близкое к теоретическому уравнению (1). Высокое значение коэффициента С(1) и его статистическая значимость с экономической точки зрения может говорить о том, что в модель включено недостаточно переменных, что позже будет исправлено. Поэтому, прежде чем делать выводы о качестве и адекватности, следует проверить построенную модель на автокорреляцию и гетероскедастичность.
По статистике Дарбина-Уотсона уравнение имеет автокорреляцию, положительную (d1=1,373, du=1,594), откуда можно сделать вывод о наличии автокорреляции.
На проблему гетероскедастичности исследуем модель при помощи теста Вайта(nocross, cross):
White Heteroskedasticity Test: | |||||
F-statistic | 1.926499 | Probability | 0.129239 | ||
Obs*R-squared | 7.193728 | Probability | 0.125998 | ||
Test Equation: | |||||
Dependent Variable: RESID^2 | |||||
Method: Least Squares | |||||
Date: 12/11/08 Time: 19:18 | |||||
Sample: 1999:1 2008:2 | |||||
Included observations: 38 | |||||
Variable | Coefficient | Std. Error | t-Statistic | Prob. | |
C | -7329.568 | 8035.888 | -0.912104 | 0.3683 | |
IG | -10.79329 | 22.84694 | -0.472417 | 0.6397 | |
IG^2 | 0.000343 | 0.007396 | 0.046398 | 0.9633 | |
CONS | 14.94592 | 10.01542 | 1.492291 | 0.1451 | |
CONS^2 | -0.001335 | 0.001299 | -1.028002 | 0.3114 | |
R-squared | 0.189309 | Mean dependent var | 11112.05 | ||
Adjusted R-squared | 0.091043 | S.D. dependent var | 13500.26 | ||
S.E. of regression | 12871.05 | Akaike info criterion | 21.88543 | ||
Sum squared resid | 5.47E+09 | Schwarz criterion | 22.10090 | ||
Log likelihood | -410.8231 | F-statistic | 1.926499 | ||
Durbin-Watson stat | 1.289207 | Prob(F-statistic) | 0.129239 | ||
White Heteroskedasticity Test: | |||||
F-statistic | 1.910945 | Probability | 0.120009 | ||
Obs*R-squared | 8.737384 | Probability | 0.120009 | ||
Test Equation: | |||||
Dependent Variable: RESID^2 | |||||
Method: Least Squares | |||||
Date: 12/11/08 Time: 19:20 | |||||
Sample: 1999:1 2008:2 | |||||
Included observations: 38 | |||||
Variable | Coefficient | Std. Error | t-Statistic | Prob. | |
C | -4788.651 | 8190.315 | -0.584672 | 0.5629 | |
IG | 10.01788 | 27.71085 | 0.361515 | 0.7201 | |
IG^2 | 0.043812 | 0.034248 | 1.279250 | 0.2100 | |
IG*CONS | -0.034393 | 0.026471 | -1.299253 | 0.2031 | |
CONS | 5.948824 | 12.09186 | 0.491969 | 0.6261 | |
CONS^2 | 0.005437 | 0.005368 | 1.012743 | 0.3188 | |
R-squared | 0.229931 | Mean dependent var | 11112.05 | ||
Adjusted R-squared | 0.109608 | S.D. dependent var | 13500.26 | ||
S.E. of regression | 12738.93 | Akaike info criterion | 21.88665 | ||
Sum squared resid | 5.19E+09 | Schwarz criterion | 22.14522 | ||
Log likelihood | -409.8464 | F-statistic | 1.910945 | ||
Durbin-Watson stat | 1.168906 | Prob(F-statistic) | 0.120009 |
Для трактовки этого теста используем «Obs*R-squared», которое сравниваем с соответствующим критическим значением
распределения со степенями свобод равным количеству переменных в модели, то есть двум. Как и в тесте crossterms, так и в nocrossterms наблюдаемое значение оказывается меньше критического при уровнях значимости ,01 и ,005, из чего следует вывод об отсутствии гетероскедастичности в построенной модели.Проблему автокорреляции исследуем далее при помощи теста Бреуша-Годфри и Q-статистики Бокса-Льюнга. Результаты этих тестов представлены ниже:
Breusch-Godfrey Serial Correlation LM Test: | ||||
F-statistic | 33.14949 | Probability | 0.000002 | |
Obs*R-squared | 18.75935 | Probability | 0.000015 | |
Test Equation: | ||||
Dependent Variable: RESID | ||||
Method: Least Squares | ||||
Date: 12/11/08 Time: 19:17 | ||||
Presample missing value lagged residuals set to zero. | ||||
Variable | Coefficient | Std. Error | t-Statistic | Prob. |
C(1) | 4.195415 | 26.50424 | 0.158292 | 0.8752 |
C(2) | 0.046689 | 0.055735 | 0.837705 | 0.4080 |
C(3) | -0.016381 | 0.022210 | -0.737543 | 0.4659 |
RESID(-1) | 0.710963 | 0.123483 | 5.757559 | 0.0000 |
R-squared | 0.493667 | Mean dependent var | -6.15E-13 | |
Adjusted R-squared | 0.448991 | S.D. dependent var | 106.8287 | |
S.E. of regression | 79.29897 | Akaike info criterion | 11.68363 | |
Sum squared resid | 213803.1 | Schwarz criterion | 11.85601 | |
Log likelihood | -217.9889 | Durbin-Watson stat | 1.935910 |
Q-статистика принимает нулевой гипотезу об отсутствии автокорреляции и строится по следующему уравнению:
, (4)где j-номер соответствующего лага,
- автокорреляция при соответствующем лаге, T- количество измерений. При отсутствии автокорреляции значения Qмогут асимптотически приближаться к соответствующему значению со степенью свободы равной номеру лага. Q-статистика широко используется для определения того является ли ряд белым шумом.Как видно из коррелограммы(Q-теста) первые значения функции имеют достаточно большие значения, при том, что заметно их последующее уменьшение при увеличении номера лага. Также на графике же частичной автокорреляции заметен первый «выдающийся» лаг, и увеличение Q на большее значение, чем по таблицам
распределения, что чётко указывает на наличие автокорреляции в модели.При отсутствии автокорреляции Q‑статистика показала бы все значения функции, колеблющиеся около нуля, независимо от номера лага.
Для того чтобы окончательно убедиться в наличии автокорреляции в модели следует проанализировать результаты по тесту Бреуша-Годфри, в котором строится уравнение вида:
(5)В регрессионной модели, построенной на основании уравнения (5) рассматривается произведение коэффициента детерминации и количества измерений. За нулевую гипотезу принимается то, что все коэффициенты нового уравнения имеют нулевые значения, или статистически незначимы, то есть отсутствие автокорреляции. Альтернативная же гипотеза говорит о наличии в исходной модели проблемы автокорреляции
Таким образом, рассматриваем значение «Obs*R-square» и сравниваем его с соответствующим критически значением из таблиц распределения
с количеством степеней свободы равным 1, так как количество степеней свободы равно количеству лагов (в данном случае один).Наблюдаемое значение оказалось больше критического(7.88 для
=0.005), следовательно принимается альтернативная гипотеза, что окончательно убеждает в том, что в модели присутствует положительная (по Дарбину-Уотсону) автокорреляция первого порядка.- была построена регрессионная модель, с хорошими показаниями t-статистик и высоким коэффициентом детерминации;
- в модели отсутствует гетероскедастичность;
- тесты Бреуша-Годфри и Q-тест выявили в модели наличие автокорреляции;
- для улучшения качества модели, а так же её прогнозных свойств автокорреляцию следует устранить.
Как известно широко используемыми методами усовершенствования модели с целью устранения автокорреляции являются:
- уточнение состава переменных, то есть устранение одной либо нескольких переменных или добавление переменных;
- изменение формы зависимости.
Если после ряда этих действий автокорреляция по-прежнему имеет место, то возможны некоторые преобразования, её устраняющие.
Для усовершенствования модели было решено добавь ещё одну переменную в анализ. Эта экзогенная переменная определяется как разность экспорта и импорта страны, и в экономической среде получила название чистого экспорта (EX-IM=NX).
Таким образом, в модели появляется третяя объясняющая переменная и зависимость принимает следующий вид:
(6)Данное уравнение является основным макроэкономическим тождеством для стран с открытой экономикой, какими и являются большинство стран мира.
При построении регрессионной модели были получены следующие данные:
Dependent Variable: GDP | ||||
Method: Least Squares | ||||
Date: 12/11/08 Time: 19:23 | ||||
Sample: 1999:1 2008:2 | ||||
Included observations: 38 | ||||
GDP=C(1)+C(2)*IG+C(3)*CONS+C(4)*NX | ||||
Coefficient | Std. Error | t-Statistic | Prob. | |
C(1) | 9.983102 | 15.40599 | 0.648001 | 0.5213 |
C(2) | 1.041238 | 0.031994 | 32.54493 | 0.0000 |
C(3) | 1.004281 | 0.017836 | 36.30674 | 0.0000 |
C(4) | 0.890623 | 0.063486 | 14.02859 | 0.0000 |
R-squared | 0.999753 | Mean dependent var | 4283.858 | |
Adjusted R-squared | 0.999731 | S.D. dependent var | 2609.517 | |
S.E. of regression | 42.77300 | Akaike info criterion | 10.44899 | |
Sum squared resid | 62204.00 | Schwarz criterion | 10.62137 | |
Log likelihood | -194.5308 | Durbin-Watson stat | 2.338553 |
Уравнение регрессии после округления принимает следующий вид: