Смекни!
smekni.com

Дисперсионный анализ при помощи системы MINITAB для WINDOWS (стр. 4 из 6)

Error 8 382.00 47.75

Total 11 758.92

Рис.4 Листинг результатов вычислений для двухфакторной модели

Проанализируем полученные результатs/

Для фактора отрасли P>

(
=0.05), значит принимается нулевая гипотеза о том, что фактор отрасли не влияет на уровень износа оборудования.

Для фактора формы собственности P>

(
=0.05), значит принимается нулевая гипотеза о том, что фактор формы собственности не влияет на уровень износа оборудования. Аналогичным образом делаем вывод о том, что на уровень износа оборудование не влияет взаимодействие факторов.

Для анализа многофакторных моделей по несбалансированным данным необходимо выбрать из меню Stat > ANOVA > GeneralLinearModel.

4 Выполнение дисперсионного анализа в Excel

Рассмотрим дисперсионный анализ на следующем примере: за месяц известны данные о выработке рабочего за время работы в первую и во вторую смены.

Таблица 2 - Исходные данные

Смена Выработка рабочего, нормо-час
1 12,1; 11,1; 12,6; 12,9; 11,6; 13,1; 12,6; 12,4; 11,6; 17,3; 12,9; 11,6; 12,4
2 9,9; 11,4; 13,4; 10,4; 12,9; 12,6; 13,9; 13,4; 12,4; 9,9; 10,2; 11,2; 9,7

Можно ли считать, что расхождение между уровнями выработки рабочего в первую и во вторую смены несущественно, т.е. можно ли считать, что генеральные средние в двух подгруппах одинаковы и, следовательно, выработка рабочего может быть охарактеризована общей средней.

Решение.

Для того чтобы ответить на поставленные вопросы, рассчитаем среднюю выработку рабочих в каждой смене. Величина выработки в первую и вторую смены различна. Теперь возникает вопрос о том, насколько существенны эти расхождения, нужно проверить предположение о возможном влиянии сменности на выработку рабочих. Результаты расчетов сведены в таблицу 3.

Таблица 3 – Промежуточные расчеты для проведения дисперсионного анализа

Смена Средняя выработка, нормо-часы
Число смен в месяце
Сумма квадратов отклонений вариантов от групповой средней
Квадраты отклонений групповых средних от общей средней
1 12.6308 13 28.09 3,2001
2 11.6385 13 28.08 3,2008
Итого
26
=56.1585
=6,4008

Используя данные таблицы, рассчитаем

и
.

Число степеней свободы для расчета внутригрупповой дисперсии равно (

) 24 (26-2), а для расчета межгрупповой дисперсии число степеней свободы равно
- 1 (2-1).

Рассчитаем значение критерия Фишера по следующей формуле:

(4)

В соответствии с числом степеней свободы для расчета внутригрупповой и межгрупповой дисперсий (24 и 1) в таблице F-распределения для α=5% находим Fтабл = 4.26.

При этом выдвигается две гипотезы. Нулевая гипотеза гласит о том, что различия выработки рабочего в первую и вторую смены несущественны. Альтернативная гипотеза: существуют существенные различия в значении выработки рабочего в первую и во вторую смены.

Так как расчетное значение критерия Фишера значительно меньше табличного значения критерия Фишера, то гипотеза о несущественности различия выработки рабочего в первую и вторую смены не опровергается, т.е. сменность не оказывает влияния на уровень выработки рабочего.

Для того, чтобы провести дисперсионный анализ в Excel, необходимо активировать команду «Анализ данных». Для этого проходится следующий путь: Сервис -> Надстройки -> Пакет анализа. После этого в меню «Сервис» появляется команда «Анализ данных» и выбирается команда «Однофакторный дисперсионный анализ».

Далее необходимо заполнить окно «Однофакторный дисперсионный анализ»:

«Входной интервал» - вводится ссылка на диапазон, содержащий анализируемые данные. Ссылка должна состоять не менее чем из двух смежных диапазонов данных, данные в которых расположены по строкам или столбцам.

«Группирование» - установите переключатель в положение. По столбцам или По строкам в зависимости от расположения данных во входном диапазоне.

«Метки в первой строке/Метки в первом столбце» - если первая строка исходного диапазона содержит названия столбцов, установите переключатель в положение Метки в первой строке. Если названия строк находятся в первом столбце входного диапазона, установите переключатель в положение Метки в первом столбце. Если входной диапазон не содержит меток, то необходимые заголовки в выходном диапазоне будут созданы автоматически.

«Альфа» - введите уровень значимости, необходимый для оценки критических параметров F-статистики. Уровень альфа связан с вероятностью возникновения ошибки типа I (опровержение верной гипотезы).

«Выходной диапазон» - введите ссылку на левую верхнюю ячейку выходного диапазона. Размеры выходной области будут рассчитаны автоматически, и соответствующее сообщение появится на экране в том случае, если выходной диапазон занимает место существующих данных или его размеры превышают размеры листа.

«Новый лист» - установите переключатель, чтобы открыть новый лист в книге и вставить результаты анализа, начиная с ячейки A1. Если в этом есть необходимость, введите имя нового листа в поле, расположенном напротив соответствующего положения переключателя.

«Новая книга» - установите переключатель, чтобы открыть новую книгу и вставить результаты анализа в ячейку A1 на первом листе в этой книге.

Пример заполнения окна «Однофакторный дисперсионный анализ» представлен на рисунке 2.

Рисунок 2 – Пример заполнения окна «Однофакторный дисперсионный анализ»

Результаты расчетов однофакторного дисперсионного анализа представлены на рисунке 3.

Однофакторный дисперсионный анализ
ИТОГИ
Группы Счет Сумма Среднее Дисперсия
Столбец 1 13 164,2 12,63077 2,34064103
Столбец 2 13 151,3 11,63846 2,33923077
Дисперсионный анализ
Источник вариации SS df MS F P-Значение F критическое
Между группами 6,400385 1 6,400385 2,73528203 0,111176312 4,259675279
Внутри групп 56,15846 24 2,339936
Итого 62,55885 25

Рисунок 3 – Результаты расчетов по однофакторному дисперсионному анализу

Интерпретация результатов:

«Группы» - данные по выработке в первую и вторую смены.

«Счет» - количество наблюдений в каждой из групп.

«Сумма» - сумма элементов каждой из групп.

«Среднее» - средняя выработка в каждой из групп.

«Дисперсия» - рассчитывается дисперсия по каждой из групп;

SS - сумма квадратов;

df - число степеней свободы;

MS – средний квадрат;

F – расчетное значение отношения Фишера;

P - уровень значимости для вычисленного F;

F критическое – табличное значение отношения Фишера.

Результаты расчетов аналогичны результатам, полученным при расчетах вручную.

Двухфакторный дисперсионный анализ в MSExel

Используя данный предыдущего примера, предположим, что у нас есть данные о поле работников. Для проведения двухфакторного дисперсионного анализа в MSExel необходимо представить данные в виде перекрестной классификации:

1 2
муж 12,1 9,9
11,1 11,4
12,6 13,4
12,9 10,4
11,6 12,9
13,1 12,6
12,6 13,9
жен 12,4 13,4
11,6 12,4
17,3 9,9
12,9 10,2
11,6 11,2
12,4 9,7
13,1 12,6

В меню «Сервис» выбрать команду «Анализ данных» и команду «Двухфакторный дисперсионный анализ с повторениями».

Далее необходимо заполнить окно «Двухфакторный дисперсионный анализ с повторениями»:

«Входной интервал» - вводится ссылка на диапазон, содержащий анализируемые данные.Необходимо отметить не только сами числа, но и заголовок таблицы.

«Число строк для выборки» - необходимо ввести количество повторений в одной ячейке. (Для нашего примера - 7)

«Альфа» - введите уровень значимости, необходимый для оценки критических параметров F-статистики. Уровень альфа связан с вероятностью возникновения ошибки типа I (опровержение верной гипотезы).

«Выходной диапазон» - введите ссылку на левую верхнюю ячейку выходного диапазона. Размеры выходной области будут рассчитаны автоматически, и соответствующее сообщение появится на экране в том случае, если выходной диапазон занимает место существующих данных или его размеры превышают размеры листа.