Смекни!
smekni.com

Конвейерная система (стр. 1 из 2)

Министерство Образования и Науки Российской Федерации

Дагестанский Государственный Технический Университет

ФИС

Кафедра ИСвЭ

Курсовая работа

по дисциплине: ИМЭП

«Конвейерная система»

Выполнила: ст-ка 4 к. гр.И-215

Ахмедова А.А.

Проверила: Расулова М.М.

Махачкала 2005г.


Содержание.

1. Введение.

2. Постановка задачи.

3. Описание метода решения.

4. Разработка модели:

· Формализованная схема

· Временная диаграмма

· Блок-схема

5. Перевод модели на язык программирования.


1. Введение.

Имитационное моделирование основано на прямом описании моделируемого объекта. Существенной характеристикой таких моделей является структурное подобие объекта и модели. Это значит, каждому существенному с точки зрения решаемой задачи элементу объекта ставится в соответствие элемент модели. При построении имитационной модели описываются законы функционирования каждого элемента объекта и связи между ними. Работа с имитационной моделью заключается в проведении имитационного эксперимента. Процесс, протекающий в модели в ходе эксперимента, подобен процессу в реальном объекте. Поэтому исследование объекта на его имитационной модели сводится к изучению характеристик процесса, протекающего в ходе эксперимента

Для формального представления процессов функционирования систем при имитационном моделировании обычно используются два типа схем, схема с дискретными событиями и непрерывные схемы. При дискретной схеме процесс функционирования системы во времени отождествляется с последовательностью событий, возникающих в системе в соответствии с закономерностями ее функционирования. В формальное понятие «событие» вкладывается конкретное смысловое содержание, определяемое целями моделирования. При непрерывной схеме процесс задается с помощью системы уравнений для совокупности переменных состояния, динамическое поведение которых имитирует реальную систему.

Ценным качеством имитации является возможность управлять масштабом времени. Динамический процесс в имитационной модели протекает в так называемом системном времени. Системное время имитирует реальное время. При этом пересчет системного времени в модели можно выполнять двумя способами: Первый заключается в «движении» по времени с некоторым постоянным шагом ∆t, второй - в «движении» по времени от события к событию. Считается, что в промежутках времени между событиями в модели изменений не происходит.

Кроме реального и системного времени существует ещё один тип времени - машинное, т.е. время, за которое реализуется имитационный эксперимент. При имитационном моделировании реальных систем, как правило, стремятся «сжать» реальное время, т.е. продолжительность процессов в модели, измеряется машинным временем, значительно меньше продолжительности тех же процессов в реальном объекте. Это дает возможность изучать функционирование реальной системы на достаточно длительных интервалах времени.

Очевидно, аналогичные задачи можно решать и с помощью аналитических методов, однако имитация позволяет работать с моделями большой размерности, учитывать ограничения и условия, которые трудно или невозможно включить в аналитическую модель, а также представлять результаты моделирования в наглядной легко интерпретируемой форме. Однако это не значит, что имитационное моделирование может заменить аналитическое. Проведение имитационного эксперимента часто оказывается трудоемкой и длительной процедурой. Поэтому на практике при решении задач анализа и управления в экономических системах аналитическое и имитационное моделирование объединяют в комплексную процедуру. Аналитическое моделирование в такой процедуре используют для быстрого, но приближенного оценивания основных характеристик систем, что позволяет выявить некоторые закономерности в поведении системы и сформулировать требования к системе управления. Имитационное моделирование занимает больше времени и позволяет определить указанные характеристики и другие с более высокой степенью точности.

Имитационное моделирование реализуются программно с использованием различных языков, как универсальных - БЕЙСИК, РАСКАЛЬ, СИ и т.д., так и специализированных, предназначенных для построения имитационных моделей - СИМСКРИПТ, GPSS, СТАМЛСЛАСС, SLAM, Pilgrim и др.

Цель курсовой работы по дисциплине «Имитационное моделирование экономических процессов» состоит в том, чтобы разработать имитирующую модель конвейерной системы.


2. Постановка задачи.

Два обслуживающих устройства установлено у ленты конвейера и, если они свободны, могут снимать изделия с конвейера. Изделия поступают на первый конвейер с постоянным интервалом, равным 10 единицам времени. Изделию, попавшему на конвейер, требуется 3 единицы времени, чтобы достичь первого обслуживающего устройства. Если первое устройство занято, изделие продолжает двигаться по ленте конвейера и через 3 единицы времени достигает второго обслуживающего устройства. Если оба устройства заняты, то изделие возвращается к устройствам через 9 единиц времени (если оно не будет снято другим устройством). Время обслуживания изделия распределено нормально с математическим ожиданием 5,0 и среднеквадратичным отклонением 1. Когда устройство у первой ленты завершает обработку изделия, оно помещает его на ленту второго конвейера, обслуживаемого другим устройством. Изделия поступают к третьему устройству через 5 единиц времени после попадания на второй конвейер. Если третье обслуживающее устройство занято, то изделие остается на ленте конвейера и через 12 единиц времени снова попадает к этому устройству. Время обслуживания третьего устройства распределено экспоненциально с математическим ожиданием 3. после обслуживания на третьем устройстве изделие покидает систему. Построить имитирующую данный пример компьютерную модель на каком-либо языке программирования, предусмотрев при этом сбор статистики о времени пребывания изделия в системе и количество изделий на ленте каждого конвейера. Построить гистограмму для времени пребывания изделия в системе.

В данном примере используется нормальное и экспоненциальное распределение, математическое ожидание и среднеквадратичное отклонение.

Нормальное распределение. Генератор нормально распределенной случайной величины X можно получить по формулам:


12

Y=√σІX-6√σІ+µ X=∑Τј, где

j=1

Τј (j=1,…,12) - значение независимых случайных величин, равномерно распределенных на интервале (0, 1).

Равномерное распределение. Равномерное распределение случайной величины Х на отрезке [a,b] выражается через равномерно распределенную на отрезке [0,1] случайную величину R формулой:

X=a+(b-a)R

Экспоненциальное (показательное) распределение. Методом обратных функций можно показать, что показательное распределенная случайная величина Xсвязана со случайной величиной R, распределенной на [0,1], соотношением:

Y=1/α*ln(1-R) , где α – параметр показательного закона.

Математическое ожидание. Математическим ожиданием, т.е. средним значением случайной величины X называется числовая величина, вычисляемая по формуле:

+∞

MX=∫ xdF(x)

-∞

Среднеквадратичное отклонение. Среднеквадратичным отклонением σх случайной величины Х называется положительный квадратный корень из ее дисперсии:

σх= √Dx=√DX


3. Описание метода решения.

Дискретно-событийный подход в имитационном моделировании.

Суть дискретно-событийного подхода - моделирование системы с помощью описания изменений состояния системы, происходящих в дискретные моменты времени. Момент времени, в который может измениться: состояние системы, называется моментом наступления события, а соответствующая ему логическая процедура обработки изменений состояния системы называется событием. Для построения дискретно-событийной модели системы необходимо определить события, при которых может изменяться состояние системы, а затем смоделировать процедуры, соответствующие каждому типу событий. Динамический портрет системы воспроизводится с помощью упорядоченной во времени последовательности событий, в каждом из которых, согласно логической процедуре, моделируются изменения состояния системы.

Состояние системы в дискретно-событийной модели, подобно состоянию в сетевой модели, определяется значениями переменных и атрибутов компонентов, принадлежащих различным классам. Начальное состояние системы устанавливается с помощью задания начальных значений переменных модели, генерации (при необходимости) начальных компонентов в системе, а также с помощью начального планирования событий в модели. В ходе имитации система «движется» от состояния к состоянию по мере того, как компоненты участвуют в действиях, изменяющих состояние системы. При дискретно-событийной имитации изменения состояния системы могут происходить только в начале действия, т. е. когда что-либо начинается, или в конце действия, т. е. когда что-либо завершается. Для моделирования начала и окончания действий используются события

Рис. 1.1. Связь между понятиями «действие» и «событие».

Понятие события, происходящего мгновенно в определенный момент времени, в который начинается или заканчивается некоторое действие, является основополагающим. На рис. 1.1 показана связь между понятиями «действие» и «событие». Внутри события время не изменяется, а изменения состояния системы происходят только в моменты наступления событий. Поведение системы имитируется последовательностью изменений ее состояния, происходящих по мере наступления событий.