Смекни!
smekni.com

Принятие решений в условиях неопределенности (стр. 2 из 3)

Шаг В: требования к компенсации за риск.

Этот шаг уточняет требования к анализируемым решениям, для которых баланс между риском потерь( при -) и компенсации( при +) является приемлемым для ЛПР.

Шаг Г: блокировка решений с недостаточной компенсацией риска.

Вот на этом шаге из матрицы полезностей(которая будет получена после шага Б) удаляются все решения, которые не соответствуют требованиям ЛПР.

Шаг Д: выбор оптимального решения.

И наконец, на этом шаге для оставшейся «урезанной» матрицы находится оптимальное решение по заранее оговоренном критерию. Это найденное решение и будит являться оптимальным выбором для соответствующего составного критерия.

Последствия решений менеджера, экономиста, инженера проявятся в будущем. А будущее неизвестно. Мы обречены принимать решения в условиях неопределенности. Мы всегда рискуем, поскольку нельзя исключить возможность нежелательных событий. Но можно сократить вероятность их появления. Для этого необходимо спрогнозировать дальнейшее развитие событий, в частности, последствия принимаемых решений.

Задача №1.

Предприятие выпускает два вида продукции: А и В. При этом используются pecypcы: Rl, R2 и R3. Нормы расхода на ресурсы составляют соответственно:

R1: a1, a2

R2: b1,b2

R3: c1, c2

Рыночная цена продукции А составляет-Р1, продукции В-Р2. Необходимо принять решение относительно плана выпуска продукции обеспечивающего максимальный доход. Оценить устойчивость выбранного решения относительно колебания цен на продукцию. Объемы ресурсов: Rl -Vl, R2-V2, R3-V3

Вариант al а2 bl Ь2 cl с2 Р1 Р2 VI V2 V3
12 3 5 2 1 4 6 3 2 30 20 48

Обозначим

- количество продукции А,
- Количество продукции В.

Найти Х=(

,
), удовлетворяющие системе

1+5х2 ≤ 30 -количество ресурса

12 ≤ 20 -количество ресурса

1+6х2 ≤ 48 - количество ресурса

и условию

при котором функция дохода принимает максимальное значение.

V = P1

+ P2
= 3
+ 2
→ max

Формулировка задачи.

Графический метод.

Построим ОДЗ

и

Неравенства

,
задают первый квадрант координатной плоскости.

Неравенство 3x1+5x2£30задает полуплоскость, расположенную под прямой 3x1+5x2=30, включая эту прямую.

Неравенство 2x1+x2£20 задает полуплоскость, расположенную под прямой 2x1+x2=20, включая эту прямую.

Неравенство 4x1+6x2£48 задает полуплоскость, расположенную под прямой 4x1+6x2=48, включая эту прямую.

Таким образом, получаем, что множество точек, удовлетворяющее всем неравенствам, Область ОАВС.

Построим вектор N{3;2}. Его проекция на ось

равна 3, на ось
2.

Поскольку необходимо найти максимум функции V, будем перемещать прямую l, перпендикулярно вектору H, от начала к концу вектора H, т.е. в направлении возрастания функции V. Перейдя в точку В, прямая l окажется на выходе из многоугольной области ОАВС. Точка В – (крайняя) последняя точка области при движении в направлении вектора H, поэтому значение функции V в этой точке будет наибольшим по сравнению с ее значениями в других точках области.

Поскольку точка В – точка пересечения первой и второй прямой, то ее координаты можно найти, решая систему уравнений:

ì 3x1 +5x2 = 30

í

î 2

+
= 20

Выразим из второго уравнения

:

x2 = 20-2x1

И подставим в первое уравнение

3x1+5(20-2x1) = 30

Откуда x1 = 10

Подставив

в выражение для
, получим x2 = 0

Таким образом оптимальное решение – точка В (10,0)

Оценим устойчивость выбранного решения относительно колебания цен на продукцию.

Функция V=3x1+2x2 достигает максимального значения в угловой точке В. При изменения коэффициентов целевой функции

точка В останется точкой оптимального решения до тех пор, пока угол наклона прямой l будет лежать между углами наклона двух прямых, пересечением которых является точка В. Этими прямыми являются
(ограничение на ресурс R1) и
(ограничение на ресурс R2).

Алгебраически записывается:

3/5£P2/P1 £2/1

0,6 £ P2/P1 £2

Таким образом найденное решение будет оптимальным, пока отношение цены продукции А к цене продукции В будет находиться в диапазоне от 0,6 до 2.

Задача 2 (Многокритериальная задача)

Используя условие задачи 1, найти план работы при котором достигается:

А) Максимум дохода

Б) Минимум затрат ресурсов (в натуральном выражении)

В) Максимум выпуска продукции А в натуральном выражении

Задача решается методом уступок Величина уступок выбирается студентом.

Решение

Как было показано в задаче 1, максимум выручки V = P1

+ P2
= 3
+ 2
→ max достигается в точке В (15, 75).

Минимум затрат ресурсов определяется минимумом целевой функции:

R= (3+4+2)x1 + (5+1+6)x2 = 9x1+12x2 → min

Поскольку ограничения на минимальный объем продукции не заданы, то минимум затрат ресурсов будет достигаться при полном прекращении выпуска продукции, т.е. когда

и
. Это же видно из рассмотрения области ОАВС на рис. 1. Соответственно минимум функции затрат ресурсов R=0.

В оптимальной по критерию максимума выручки точке В (10,0) целевая функция принимает значение:

V= 3x1+2x2 =3*10+2*0 =30

Примем величину уступки 90%

90%V=30*0,9=27

То есть

V= 3x1+2x2 =27

Нанесем прямую 3x1+2x2 =27 на график (рис. 2)

Для поиска минимума функции R=9x1+12x2 построим вектор М{9;12}. Его проекция на ось

равна 9, на ось
12.

Поскольку необходимо найти минимум функции R, будем перемещать прямую m, перпендикулярно вектору М, от конца к началу вектора М, т.е. в направлении уменьшения функции R. Перейдя в точку К, прямая m окажется на выходе из области КВР. Точка К – крайняя точка прямой 3x1+2x2 =27 в области ОАВС при движении в направлении к началу вектора М, поэтому значение функции R в этой точке будет наименьшим по сравнению с ее значениями в других точках области.

Решив систему уравнений:

ì 3x1 +5x2 = 30

í

î 3

+2
= 27

Найдем x1 = 8 1/3

x2= 1

Таким образом решение многокритериальной задачи при уступке по максимуму выручки 90% - точка К(8 1/3; 1).

Задача 3 (Принятие решений в условиях неопределенности)