6. Аналитическая записка:
Линейный коэффициент парной корреляции равен 0,484, следовательно связь изучаемых явлений является умеренной, прямой.
Коэффициент детерминации равен 0,234, т.е. вариация результата на 23,4% объясняется вариацией фактора х.
Средняя ошибка аппроксимации равна 4,010%, что попадает в допустимый предел значений 8-10% и говорит о том, что расчетные значения отклоняются от фактических примерно на 4%.
Полученное значение F-критерия превышает табличное, следовательно параметры уравнения и показателя тесноты статистически незначимы.
Полученные значения t-критерия показывают, что параметры a и b статистически незначимы, т.к. их фактические значения t-критерия меньше табличного. А коэффициент парной корреляции статистически значим, т.к. фактическое значение его t-критерия больше табличного.
Определение доверительных интервалов показало, что параметр b является статистически незначимым и равен нулю, т.к. в границы его доверительного интервала попадает ноль:
По данным, представленным в таблице, изучается зависимость бонитировочного балла (У) от трех факторов .
№ п/п | Внесено минеральных удобрений на посевную площадь, ц | Коэффициент износа основных средств | Запасы влаги в почве, мм | Бонитировочный балл |
Х1 | Х2 | Х3 | У | |
1 | 13,9 | 57,6 | 144 | 75 |
2 | 8,8 | 41,6 | 110 | 54 |
3 | 4 | 66,5 | 110 | 61 |
4 | 0,01 | 52,8 | 177 | 64 |
5 | 4,2 | 51,6 | 186 | 72 |
6 | 0,7 | 37,3 | 112 | 69 |
7 | 6,7 | 44,2 | 148 | 79 |
8 | 15,9 | 46,3 | 151 | 73 |
9 | 1,9 | 39,6 | 110 | 60 |
10 | 1,9 | 28,3 | 151 | 72 |
11 | 0,01 | 64,6 | 131 | 54 |
12 | 0,01 | 49,4 | 113 | 77 |
13 | 0,01 | 58,4 | 110 | 57 |
14 | 1,2 | 58,9 | 127 | 72 |
15 | 0,01 | 49,6 | 136 | 72 |
16 | 0,01 | 51,9 | 136 | 67 |
17 | 3,7 | 49,7 | 144 | 72 |
18 | 0,01 | 37,6 | 100 | 55 |
19 | 0,01 | 50,3 | 148 | 68 |
20 | 1,6 | 43,2 | 129 | 68 |
21 | 2,5 | 36,2 | 125 | 73 |
22 | 0,01 | 53,5 | 113 | 61 |
23 | 6,3 | 49,6 | 129 | 70 |
24 | 0,01 | 54,3 | 168 | 70 |
25 | 13,1 | 42,9 | 125 | 69 |
26 | 0,4 | 31,1 | 125 | 75 |
27 | 0,01 | 49,7 | 131 | 47 |
28 | 0,8 | 24,6 | 146 | 70 |
29 | 0,01 | 58,7 | 88 | 66 |
30 | 0,01 | 56,3 | 127 | 66 |
31 | 0,5 | 48,4 | 113 | 69 |
32 | 0,01 | 50,6 | 151 | 68 |
33 | 2,3 | 49,4 | 129 | 68 |
34 | 0,01 | 56,8 | 177 | 67 |
35 | 0,01 | 40,1 | 131 | 46 |
Задание следует решить с помощью ППП MSEXCEL или любого другого статистического пакета прикладных программ.
Задание.
1. Постройте матрицу парных коэффициентов корреляции. Установите какие факторы мультиколлинеарны.
2. Постройте уравнение множественной регрессии в линейной форме с полным набором факторов.
3. Оцените статистическую значимость уравнения регрессии и его параметров с помощью критериев Фишера и Стьюдента.
4. Отберите информативные факторы по пунктам 1 и 3. Постройте уравнение регрессии со статистически значимыми факторами.
5. Оцените полученные результаты, выводы оформите в аналитической записке.
Решение.
Для проведения корреляционного анализа воспользуемся программой «Excel»:
1) загрузить среду Excel ;
2) выделить рабочее поле таблицы;
3) выбрать пункт меню «Сервис» и в появившемся меню выбрать «Анализ данных» (рис. 1);
Рис. 1 Меню «Сервис».
4) в появившемся диалоговом окне «Анализ данных» (рис. 2) выбрать «Корреляция;
Рис. 2. Диалоговое окно «Анализ данных».
5) в появившемся диалоговом окне «Корреляция» (рис. 3) убедиться, что все проставленные в нем установки соответствуют таблице исходных данных. После выполнения этих операций нажать клавишу «ОК»;
Рис. 3. Диалоговое окно «Корреляция».
В результате получим:
Х1 | Х2 | Х3 | У | |
Х1 | 1 | |||
Х2 | -0,03376 | 1 | ||
Х3 | 0,098684 | 0,033191 | 1 | |
У | 0,26943 | -0,13538 | 0,312057 | 1 |
Анализ полученных коэффициентов парной корреляции показывает, что зависимая переменная, т.е. бонитировочный балл имеет слабую прямую связь со всеми независимыми переменными, т.к. значения коэффициентов парной корреляции ниже 0,4.
Мультиколлинеарность отсутствует
2.Для проведения регрессионного анализа, также используем Excel.
1) загрузить среду Excel ;
2) выделить рабочее поле таблицы;
3) выбрать пункт меню «Сервис» и в появившемся меню выбрать «Анализ данных» (рис. 4);
Рис. 4. Меню «Сервис».
4) в появившемся диалоговом окне «Анализ данных» (рис. 5) выбрать «Регрессия»;
Рис. 5. Диалоговое окно «Анализ данных».
5) в появившемся диалоговом окне «Регрессия» (рис. 6) убедиться, что все проставленные в нем установки соответствуют таблице исходных данных. После выполнения этих операций нажать клавишу «ОК»;
Рис. 6. Диалоговое окно «Регрессия».
В результате получим:
ВЫВОД ИТОГОВ | ||||||||
Регрессионная статистика | ||||||||
Множественный R | 0,416713 | |||||||
R-квадрат | 0,17365 | |||||||
Нормированный R-квадрат | 0,09368 | |||||||
Стандартная ошибка | 7,58219 | |||||||
Наблюдения | 35 | |||||||
Дисперсионный анализ | ||||||||
df | SS | MS | F | Значимость F | ||||
Регрессия | 3 | 374,508 | 124,836 | 2,171453 | 0,111346483 | |||
Остаток | 31 | 1782,178 | 57,4896 | |||||
Итого | 34 | 2156,686 | ||||||
Коэффициенты | Стандартная ошибка | t-статистика | P-Значение | Нижние 95% | Верхние 95% | Нижние 95,0% | Верхние 95,0% | |
Y-пересечение | 56,84826 | 10,01268 | 5,677626 | 3,08E-06 | 36,42724917 | 77,26927 | 36,42725 | 77,26927 |
Х1 | 0,440965 | 0,306967 | 1,436523 | 0,16087 | -0,185098139 | 1,067027 | -0,1851 | 1,067027 |
Х2 | -0,11314 | 0,13485 | -0,83899 | 0,407899 | -0,388166847 | 0,161891 | -0,38817 | 0,161891 |
Х3 | 0,104629 | 0,058561 | 1,786669 | 0,083775 | -0,014806871 | 0,224065 | -0,01481 | 0,224065 |
Уравнение регрессии полученное с помощью Excel, имеет вид:
3. По данным проведенного корреляционного и регрессионного анализа оценим статистическую значимость уравнения регрессии и его параметров с помощью критериев Фишера и Стьюдента.
Общий F-критерий проверяет гипотезу о статистической значимости уравнения регрессии. Анализ выполняется при сравнении фактического и табличного значения F-критерия Фишера.
Частные F-критерии оценивают статистическую значимость присутствия факторов в уравнении регрессии, оценивают целесообразность включения в уравнение одного фактора после другого.
t-критерий проверяет гипотезу о статистической значимости факторов уравнения регрессии.
4. Согласно проведенному анализу информативными факторами являются х1 и х2, а также коэффициенты b1 и b2. Следовательно уравнение регрессии со статистически значимыми факторами будет иметь вид:
5. Аналитическая записка.
По результатам проведенного корреляционного анализа можно сказать, что межфакторная связь слабая, т.к. значения коэффициентов парной корреляции не превышают значения 0,4, хотя можно сказать, что наибольшая связь результативного признака с
и .Мультиколлинеарность отсутствует, т.к. ни одно значение коэффициентов не превышает 0,7.
Фактическое значение F-критерия Фишера меньше табличного, следовательно можно сказать, что полученное уравнение регрессии статистически незначимо.
По полученным значениям частных F-критериев Фишера, можно сказать, что включение фактора х2 после х3 оказался статистически незначимым: прирост факторной дисперсии (в расчете на одну степень свободы) оказался несущественным. Следовательно, регрессионная модель зависимости бонитировочного балла от количества минеральных удобрений, внесенных в почву и запасов влаги в почве является достаточно статистически значимой и что нет необходимости улучшать ее, включая дополнительный фактор х2 (коэффициент износа основных средств).