Смекни!
smekni.com

6. Аналитическая записка:

Линейный коэффициент парной корреляции равен 0,484, следовательно связь изучаемых явлений является умеренной, прямой.

Коэффициент детерминации равен 0,234, т.е. вариация результата на 23,4% объясняется вариацией фактора х.

Средняя ошибка аппроксимации равна 4,010%, что попадает в допустимый предел значений 8-10% и говорит о том, что расчетные значения отклоняются от фактических примерно на 4%.

Полученное значение F-критерия превышает табличное, следовательно параметры уравнения и показателя тесноты статистически незначимы.

Полученные значения t-критерия показывают, что параметры a и b статистически незначимы, т.к. их фактические значения t-критерия меньше табличного. А коэффициент парной корреляции статистически значим, т.к. фактическое значение его t-критерия больше табличного.

Определение доверительных интервалов показало, что параметр b является статистически незначимым и равен нулю, т.к. в границы его доверительного интервала попадает ноль:

ЗАДАЧА 2.

По данным, представленным в таблице, изучается зависимость бонитировочного балла (У) от трех факторов .

№ п/п Внесено минеральных удобрений на посевную площадь, ц Коэффициент износа основных средств Запасы влаги в почве, мм Бонитировочный балл
Х1 Х2 Х3 У
1 13,9 57,6 144 75
2 8,8 41,6 110 54
3 4 66,5 110 61
4 0,01 52,8 177 64
5 4,2 51,6 186 72
6 0,7 37,3 112 69
7 6,7 44,2 148 79
8 15,9 46,3 151 73
9 1,9 39,6 110 60
10 1,9 28,3 151 72
11 0,01 64,6 131 54
12 0,01 49,4 113 77
13 0,01 58,4 110 57
14 1,2 58,9 127 72
15 0,01 49,6 136 72
16 0,01 51,9 136 67
17 3,7 49,7 144 72
18 0,01 37,6 100 55
19 0,01 50,3 148 68
20 1,6 43,2 129 68
21 2,5 36,2 125 73
22 0,01 53,5 113 61
23 6,3 49,6 129 70
24 0,01 54,3 168 70
25 13,1 42,9 125 69
26 0,4 31,1 125 75
27 0,01 49,7 131 47
28 0,8 24,6 146 70
29 0,01 58,7 88 66
30 0,01 56,3 127 66
31 0,5 48,4 113 69
32 0,01 50,6 151 68
33 2,3 49,4 129 68
34 0,01 56,8 177 67
35 0,01 40,1 131 46

Задание следует решить с помощью ППП MSEXCEL или любого другого статистического пакета прикладных программ.

Задание.

1. Постройте матрицу парных коэффициентов корреляции. Установите какие факторы мультиколлинеарны.

2. Постройте уравнение множественной регрессии в линейной форме с полным набором факторов.

3. Оцените статистическую значимость уравнения регрессии и его параметров с помощью критериев Фишера и Стьюдента.

4. Отберите информативные факторы по пунктам 1 и 3. Постройте уравнение регрессии со статистически значимыми факторами.

5. Оцените полученные результаты, выводы оформите в аналитической записке.

Решение.

Для проведения корреляционного анализа воспользуемся программой «Excel»:

1) загрузить среду Excel ;

2) выделить рабочее поле таблицы;

3) выбрать пункт меню «Сервис» и в появившемся меню выбрать «Анализ данных» (рис. 1);

Рис. 1 Меню «Сервис».

4) в появившемся диалоговом окне «Анализ данных» (рис. 2) выбрать «Корреляция;

Рис. 2. Диалоговое окно «Анализ данных».

5) в появившемся диалоговом окне «Корреляция» (рис. 3) убедиться, что все проставленные в нем установки соответствуют таблице исходных данных. После выполнения этих операций нажать клавишу «ОК»;

Рис. 3. Диалоговое окно «Корреляция».

В результате получим:

Х1 Х2 Х3 У
Х1 1
Х2 -0,03376 1
Х3 0,098684 0,033191 1
У 0,26943 -0,13538 0,312057 1

Анализ полученных коэффициентов парной корреляции показывает, что зависимая переменная, т.е. бонитировочный балл имеет слабую прямую связь со всеми независимыми переменными, т.к. значения коэффициентов парной корреляции ниже 0,4.

Мультиколлинеарность отсутствует

2.Для проведения регрессионного анализа, также используем Excel.

1) загрузить среду Excel ;

2) выделить рабочее поле таблицы;

3) выбрать пункт меню «Сервис» и в появившемся меню выбрать «Анализ данных» (рис. 4);

Рис. 4. Меню «Сервис».

4) в появившемся диалоговом окне «Анализ данных» (рис. 5) выбрать «Регрессия»;

Рис. 5. Диалоговое окно «Анализ данных».

5) в появившемся диалоговом окне «Регрессия» (рис. 6) убедиться, что все проставленные в нем установки соответствуют таблице исходных данных. После выполнения этих операций нажать клавишу «ОК»;

Рис. 6. Диалоговое окно «Регрессия».

В результате получим:


ВЫВОД ИТОГОВ
Регрессионная статистика
Множественный R 0,416713
R-квадрат 0,17365
Нормированный R-квадрат 0,09368
Стандартная ошибка 7,58219
Наблюдения 35
Дисперсионный анализ
df SS MS F Значимость F
Регрессия 3 374,508 124,836 2,171453 0,111346483
Остаток 31 1782,178 57,4896
Итого 34 2156,686
Коэффициенты Стандартная ошибка t-статистика P-Значение Нижние 95% Верхние 95% Нижние 95,0% Верхние 95,0%
Y-пересечение 56,84826 10,01268 5,677626 3,08E-06 36,42724917 77,26927 36,42725 77,26927
Х1 0,440965 0,306967 1,436523 0,16087 -0,185098139 1,067027 -0,1851 1,067027
Х2 -0,11314 0,13485 -0,83899 0,407899 -0,388166847 0,161891 -0,38817 0,161891
Х3 0,104629 0,058561 1,786669 0,083775 -0,014806871 0,224065 -0,01481 0,224065

Уравнение регрессии полученное с помощью Excel, имеет вид:

3. По данным проведенного корреляционного и регрессионного анализа оценим статистическую значимость уравнения регрессии и его параметров с помощью критериев Фишера и Стьюдента.

Общий F-критерий проверяет гипотезу о статистической значимости уравнения регрессии. Анализ выполняется при сравнении фактического и табличного значения F-критерия Фишера.

Частные F-критерии оценивают статистическую значимость присутствия факторов в уравнении регрессии, оценивают целесообразность включения в уравнение одного фактора после другого.

t-критерий проверяет гипотезу о статистической значимости факторов уравнения регрессии.

4. Согласно проведенному анализу информативными факторами являются х1 и х2, а также коэффициенты b1 и b2. Следовательно уравнение регрессии со статистически значимыми факторами будет иметь вид:

5. Аналитическая записка.

По результатам проведенного корреляционного анализа можно сказать, что межфакторная связь слабая, т.к. значения коэффициентов парной корреляции не превышают значения 0,4, хотя можно сказать, что наибольшая связь результативного признака с

и
.

Мультиколлинеарность отсутствует, т.к. ни одно значение коэффициентов не превышает 0,7.

Фактическое значение F-критерия Фишера меньше табличного, следовательно можно сказать, что полученное уравнение регрессии статистически незначимо.

По полученным значениям частных F-критериев Фишера, можно сказать, что включение фактора х2 после х3 оказался статистически незначимым: прирост факторной дисперсии (в расчете на одну степень свободы) оказался несущественным. Следовательно, регрессионная модель зависимости бонитировочного балла от количества минеральных удобрений, внесенных в почву и запасов влаги в почве является достаточно статистически значимой и что нет необходимости улучшать ее, включая дополнительный фактор х2 (коэффициент износа основных средств).