В отношении экономики можно сказать, что это динамическая система - множество, обладающее целостностью, в котором эволюционируют и элементы множества, и их свойства, и отношения между ними.
Систему, в том числе алгебраическую, можно рассматривать и как инструмент принятия решений, и как модель, как способ восприятия реальных феноменов.
Абстрактная система - это совокупность взаимосвязанных переменных (разной алгебраической природы), отражающих характеристики описываемого явления или объекта. Фактически это математическая модель. Опишем структуру системы. В систему входят:
· совокупность взаимосвязанных элементов;
· субъект исследования - исследователь;
· формулировка задачи - отношения наблюдателя, исследователя, к совокупности элементов, соответствующий отбор элементов и их существенных свойств;
· отношения между элементами;
· описание наборов элементов, переменных, параметров и констант, а также связей между ними.
И теперь нужно обратиться к понятию структуализма в экономической теории. Структуралистская идея заключается в аксиоматическом формальном задании отношений и связей между элементами системы, включая как идентифицированные, так и неизвестные элементы, первоначально заданные чисто символически. Кроме того задается логика анализа следствий из имеющихся посылок и правил вывода. В результате многократного применения (иногда в бесконечном процессе) этих правил происходит частичная или полная идентификация искомых блоков модели.
Структурное исследование экономики - это:
· логико-математическое описание реальных или абстрактных процессов и явлений;
· если же имеет место дополнение постструктуалистской методологией, то к этому добавляется подобное изучение во всей многоплановости и полноте экономических явлений, в их противоречивости и возможной неформализованности.
Модели математической экономики
Математическая экономика изучает свойства экономической динамики и равновесия с помощью математических моделей этих феноменов и точного исследования моделей. При этом получены условия положительного экономического роста и условия равновесия экономики при различных предположениях о природе производства. и распределения продуктов, о механизме рынка и установления цен, ренты и других экономических величин.
Классические модели математической экономики таковы:
· модель оптимального использования ограниченных ресурсов в технологических способах. Это модель оптимального выбора;
· модель Леонтьева — модель межотраслевого баланса — как в статической, так и в динамической формах. Это модель прямых, косвенных и полных взаимосвязей подразделений экономики;
· теоретико-игровые модели;
· модель фон Неймана о росте капитала и натурального производства, об образовании ценностей товаров и о вычислении объективно обоснованной ренты;
· модели технологических множеств и теоремы о магистралях как образцовых траекториях экономического развития;
· модели равновесия: Вальраса, Эрроу, Дебре и других;
· модели обмена, в том числе международного;
· модели согласования предпочтений экономических субъектов;
· модели прямого и расширенного воспроизводства национальной экономики;
В настоящее время интенсивно развиваются модели финансовой и актуарной математики, которые включают в себя в качестве блоков математическую статистику и распознавание образов.
Модели исследования операций являются граничащими с математической экономикой моделями, они дополняют теоретические исследования и позволяют строить и исследовать более практические модели — такие, например, как модели управления запасами, модели календарного планирования и другие.
1. Е.С. Вентцель. Исследование операций: задачи, принципы, методология. - М.: 2004.
2. О.А. Косоруков, А.В. Мищенко. Учебник для ВУЗов. - М.: «Экзамен», 2003.
3. Н.Ш. Кремер, Б.А. Путко, И.М. Тришин, М.Н. Фридман.- М.: ЮНИТИ, 2002.
4. Хемди А. Таха. Введение в исследование операций. 6-е издание: пер. с англ.-М.: Издательский дом «Вильямс», 2001.
5. П.В. Конюховский. Математические методы исследования операций. - М.: Питер, 2000.
6. Н.Ш. Кремер. Исследование операций в экономике. - М.: «Банки и биржи» Издательское объединение «ЮНИТИ», 1997.
7. А. Б. Аронович, М.Ю.Афанасьев, Б.П. Суворов. Сборник задач по исследованию операций. – М.: Издательство МГУ, 1997.
8. Ю.И. Дегтярев. Системный анализ и исследование операций. Учебник для ВУЗов. – М.: Высшая школа, 1996.
9. Г. Вагнер. Основы исследований операций. Т.1-3. - М.: Мир, 1972.
10. Исследование операций. Учебник для ВУЗов под общей редакцией д.э.н. Н.П. Тихомирова.