1. Критерий Вальда — критерий крайнего пессимизма. Наилучшая, по Вальду, стратегия — соответствующая наибольшему из наименьших выигрышей. Наилучшей, по Вальду, будет стратегия А3, т.е. разместив по 250000 тыс. руб. на рынках США и Европы, банк получит прибыль не менее, чем на 5629,29 руб.
2. Критерий Сэвиджа — критерий минимального риска. Наилучшей, по Сэвиджу, считается стратегия, соответствующая наименьшему из наибольших рисков. Для ее определения построим дополнительную матрицу R:
П1 | П2 | |
A1 | 25948,32 | 673,20 |
A2 | 0,00 | 29048,34 |
A3 | 1715,59 | 0,00 |
Стратегия А3 соответствует минимальному из максимальных рисков, т.е. наилучшей, по Сэвиджу будет вложение по 250000 руб. на обоих рынках.
3. Критерий Гурвица — критерий пессимизма-оптимизма. Параметр γ в нашем случае равен 0,4. Рассчитаем числа и выберем из них максимальное:
a1 = 0,4Ч(-18603,45) + 0,6Ч6757,18 = -3387,07
a2 = 0,4Ч (-21617,96) + 0,6Ч7344,87 = -4240,26
a3 = 0,4Ч5629,29 + 0,6Ч7430,39 = 6709,95
Таким образом при γ = 0,4, если руководство банка настроено оптимистично оно принимает решение вложить по 250000 руб. на обоих рынках.
4.Критерий Байеса — используется тогда, когда известны вероятности состояний природы. Такая ситуация называется ситуацией риска. Наилучшей, по Байесу, стратегией считается соответствующая наибольшему ожидаемому выигрышу. Рассчитаем а1, а2, а3:
a1 = 0,4Ч (-18603,45) + 0,6Ч 6757,18 = -3387,07
a2 = 0,4Ч7344,87 + 0,6Ч (-21617,96) = -10032,82
a3 = 0,4Ч5629,29 + 0,6Ч7430,39 = 6709,95
Наилучшей, по Байесу, стратегией будет стратегия А3.
Задание 7
Компания рассматривает строительство филиалов в четырех местах, соответственно имеются четыре проекта, продолжительностью 5 лет. Первоначальные инвестиции и доходы по годам приведены в таблице исходных данных. Инвестиционные возможности компании ограничены. В силу определенных соображений сумма расстояний от компании до филиалов не должна превышать 450 км. Из-за ограниченности фонда заработной платы общее число работников филиала на должно превышать 450 человек. Совместное строительство филиалов не допускается, так как они располагаются достаточно близко друг к другу.
Построить модель оптимального распределения инвестиций по проектам, в качестве критерия оптимальности использовать сумму NPV проектов. Ставка дисконта равна 15%.
Номер проекта | I0 | Доходы по годам | ||||
первый | второй | третий | четвертый | пятый | ||
первый | 1250 | -200 | 600 | 1200 | 1300 | 1400 |
второй | 1300 | 100 | 830 | 700 | 570 | 720 |
третий | 1400 | 500 | 250 | 400 | 320 | 710 |
четвертый | 2200 | -330 | 1000 | 1150 | 1600 | 1800 |
Решение
Для расчета NPV будем использовать следующую формулу:
i = 1,2,3,4Отсюда:
NPV1 = 1258,12
NPV2 = 558,68
NPV3 = 22,78
NPV4 = 835,05
Введем переменные. Пусть хi, i = 1,2,3,4 характеризует i-й проект и может принимать только 2 значения — 0 или 1. Если хi = 0, это значит, что i-й проект не следует инвестировать. Если хi = 1, то i-й проект следует инвестировать.
Используя введенные переменные запишем целевую функцию:
NPV = 1258,12х1 + 558,68х2 + 22,78х3 + 835,05х4
Теперь запишем ограничения, которые вытекают из условий задачи.
Первое ограничение следует из ограниченности инвестиционных возможностей компании:
1250х1 + 1300х2 + 1400х3 + 2200х4≤5600
Второе ограничение следует из того, что в первом году некоторые проекты еще не требуют инвестиций, которые должны быть покрыты доходами от других проектов:
-200х1 + 100х2 + 500х3 - 300х4≥0
Далее запишем ограничение, вытекающее из ограниченности суммы расстояний:
100х1 + 90х2 + 120х3 + 160х4≤450
Аналогично запишем ограничение, которое следует из того, что общее количество работников филиалов ограничено:
100х1 + 120х2 + 120х3 + 150х4≤450
Наконец, запишем условие того, что второй и третий филиалы одновременно строить нельзя:
х2 + х3 ≤1
Модель оптимального распределения инвестиций по проектам состоит в максимизации целевой функции при ограничениях, т.е.NPV = 1258,12х1 + 558,68х2 + 22,78х3 + 835,05х4 (max)
1250х1 + 1300х2 + 1400х3 + 2200х4≤5600
-200х1 + 100х2 + 500х3 - 300х4≥0
100х1 + 90х2 + 120х3 + 160х4≤450
100х1 + 120х2 + 120х3 + 150х4≤450
х2 + х3 ≤1
0, если i-й проект не инвестироватьxi =
1, если i-й проект инвестировать, i=1,2,3,4