ЛЕНИНГРАДСКИЙ ОБЛАСТНОЙ ИНСТИТУТ ЭКОНОМИКИ И ФИНАНСОВ
Факультет менеджмента
Кафедра высшей математики
ОТЧЁТ
о лабораторной работе №5
по дисциплине: «Экономико-математическое моделирование»
на тему: «Модель рыночной экономики Кейнса»
вариант № 3
Выполнил
студент дневного отделения
факультета менеджмента
II курса 241 группы
Погосян Т.Р.
Гатчина
2006
ГЛАВА 1. ОПРЕДЕЛЕНИЕ УСЛОВИЙ РАВНОВЕСИЯ НА РЫНКАХ ДЕНЕГ И ТОВАРОВ
1.2. Алгоритм вычисления показателей и экономический анализ полученных результатов
ГЛАВА 2. ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ МОДЕЛИ
2.3 Определение параметров уравнения регрессии с использованием МНК
2.4. Экономический анализ полученных результатов
ПРИЛОЖЕНИЯ
Введение
Классическая модель давала ответ на задачу поиска равновесия в экономике в условиях полной занятости. В модели Кейнса показано, что равновесие при полной занятости не является общим случаем. Общий случай - это равновесие при наличии безработицы, а полная занятость лишь особый случай. Но как прийти к равновесию, если экономика при определенном стечении обстоятельств далеко отошла от равновесного состояния и характеризуется массовой безработицей? Чтобы достигнуть желаемого состояния полной занятости, государство обязано проводить особую политику по её достижению, поскольку автоматически действующие рыночные силы без этой поддержки не гарантируют её достижения. Рассмотрим, как определяется равновесное состояние экономики в модели, предложенной Кейнсом.
Целью данной работы является определение условий равновесия на рынках денег и товаров, а также определение параметров модели косвенным методом наименьших квадратов.
Данная работа состоит из введения, двух глав, заключения и двух приложений.
Первая глава посвящена определению условий равновесия на рынках денег и товаров, даётся постановка задачи, вычисляются показатели, и даётся экономический анализ полученных результатов.
Вторая глава работы посвящена определению параметров уравнения функции потребления в простой кейнсианской модели формирования доходов, определяются параметры уравнения регрессии косвенным методом наименьших квадратов, а также даётся экономический анализ полученных результатов.
ГЛАВА 1. ОПРЕДЕЛЕНИЕ УСЛОВИЙ РАВНОВЕСИЯ НА РЫНКАХ ДЕНЕГ И ТОВАРОВ
1.1. Постановка задачи
В модели предполагается, что существует три вида активов: деньги, облигации, физический капитал. Относительная цена денег, выраженная в облигациях, - это ставка процента по облигациям. Предполагается, что в условиях равновесия норма прибыли на физический капитал (т.е. на имеющийся запас инвестиционных товаров) равна ставке дохода по облигациям.
Таким образом, появляется возможность проследить, как денежно-кредитная политика влияет на производство. Например, увеличение денежной массы путем печатания новых денег изменяет пропорции обмена между деньгами и облигациями. Если денег станет больше, их будут хранить только при снижении нормы процента на облигации (альтернативный вид активов), при этом норма прибыли также должна снизиться, поскольку облигации и капитал – близкие предметы.
Рассмотрим теперь критерий максимума прибыли по отношению к капиталу (фондам) при фиксированном уровне занятости. Прибыль определяется по формуле:
П = p*F(K, L) – r*К, (1.1)
где р – цена единицы валового внутреннего продукта;
К – капитал, вовлеченный в производство;
L – трудовые ресурсы, вовлеченные в производство;
r – норма прибыли (ставка процента).
Необходимое условие экстремума:
, (1.2)поскольку , то действительно получим условие максимума
(1.3)т.е. предельная производительность фондов в стоимостном виде равна норме прибыли (ставке процента).
Таким образом, падение нормы прибыли согласно (1.3) означает падение предельного продукта капитала, а поскольку предельный продукт падает с ростом К, то падение нормы прибыли с необходимостью предполагает увеличение спроса на инвестиционные товары, следовательно, и на товары в целом. Проследив всю причинно-следственную цепочку, видим, что сравнительно небольшое увеличение денежной массы приводит к росту спроса на товары, соответственно, к росту предложения товаров, т.е. к увеличению конечного продукта.
Рассмотрим более подробно рынок труда в модели Кейнса. Напомним, что в классической модели равновесие наступало при полной занятости, и равновесное значение реальной заработной платы
определялось из условия:(1.4)
При этом равновесный конечный продукт определяется формулой: Y0 = F(K, L0), где L0- число занятых при полной занятости. Предположим теперь, что по определенным причинам спрос Е (на продукцию) оказался меньше предложения Y0 при полной занятости. В этом случае, как считал Кейнс, фактически произведённый конечный продукт Y будет равен спросу: Y = E. Таким образом, фактическая занятость будет меньше полной занятости Y < Y0. Это немедленно окажет влияние на рынок рабочей силы в связи с тем, что при прочих равных условиях меньший объём продукта можно произвести с помощью меньшего числа рабочих, т.е. L < L0.
Таким образом, если в классической модели реальная заработная плата (w/p)0 определяла число занятых
, то в модели Кейнса спрос на товары Е определяет уровень занятости L. При этом ∆L = L0 - L и есть тот уровень безработицы, который диктуется рынками денег и товаров.Дело в том, что производители не могут продать столько, сколько они хотели бы, но производят и продают только в объёме спроса. Поэтому кривая спроса на рабочую силу, которая выводилась в предположении максимизации прибыли, не может быть применена.
Следовательно, основные новшества модели Кейнса по сравнению с классической моделью состоят в следующем:
1. Равновесие на рынке товаров достигается при равенстве планируемого спроса и фактического предложения.
2. Фактический спрос на рабочую силу определяется фактически востребованным продуктом, и, значит, равновесие на рынке рабочей силы может быть достигнуто тогда, когда рынок товаров находится в равновесии.
В целом модель Кейнса можно записать в следующем виде:
LS = LS (w / p), LD = LD(Y 0). (1.5)
Рынок денег:
M S = M S ; M D = k * p * Y + Lq(r),
< 0, (1.6)M S = M D , (1.7)
где Lq(r) - спрос на облигации в зависимости от процентной ставки.
Y=Y(L), E=C(Y)+I(r),
(1.8)Y=E. (1.9)
При исследовании поведения экономики формулы (1.5) – (1.9) должны быть заменены конкретными зависимостями, отражающими поведение рынков.
Рассмотрим равновесие на рынке товаров, полагая, что зависимости C(Y), I (r) линейные. В этом случае спрос на потребительские товары растёт линейно с ростом предложения товаров:
C(Y) = a + b * Y, (1.10)
где а > 0, 0 < b < 1.
Спрос на инвестиционные товары линейно убывает с ростом нормы процента:
I(r) = d – f * r, (1.11)
где d >0, f > 0.
В этом случае условие равновесия (1.9) запишется в следующей форме:
, (1.12)откуда
, (1.13)
т.е. кривая равновесия на рынке товаров (кривая IS) является линейно-убывающей функцией r и, следовательно, при фиксированном значении r имеется единственное равновесное значение Y G (r).
Рассмотрим теперь равновесие на рынке денег в предположении, что спрос на облигации Lq(r) линеен:
Lq (r) = h – j*r. (1.14)
Условие равновесия (1.7) при этом запишется в следующем виде:
. (1.15)
Таким образом, кривая равновесия на рынке денег (кривая LM) является возрастающей линейной функцией r, следовательно, при фиксированном r имеется единственное равновесное значение Y M (r).
Общее равновесие на рынках денег и товаров достигается в том случае, когда:
YG (r0 ) = Y M (r0) = Y0, (1.16)
причём точка равновесия (Y0, r0), т.е. точка пересечения кривых IS и LM единственна.
Общая картина равновесия может быть представлена графически. При этом в первом квадрате изображены кривые IS и LM, а в четвёртом квадрате производственная функция экономики ПФ как функция трудовых ресурсов, в третьем - кривые спроса LD и предложения LS на рабочую силу.
Рис. 1.
На рис. 1. приняты следующие обозначения:
- r0, Y0, L0, (w/p)0, (w/p)n – соответственно, процентная ставка, конечный продукт, занятость, максимальный и минимальный уровни реальной заработной платы при неполной занятости;