Смекни!
smekni.com

Статистические методы анализа динамики численности работников (стр. 5 из 9)

В статистике периодические колебания, которые имеют определенный и постоянный период, равный годовому промежутку, носят название «сезонные колебания» или «сезонные волны», а динамический ряд в этом случае называют сезонным рядом динамики.

Сезонные колебания наблюдаются в различных отраслях экономики: при производстве большинства сельскохозяйственных продуктов, их переработке, в строительстве, транспорте, торговле и т.д. Значительной колеблимости во внутригородской Динамике подвержены денежное обращение и товарооборот. Наибольшие денежные доходы образуются у населения в 3 и 4 кварталах, особенно это характерно для селян. Максимальный объем розничного товарооборота приходится на конец каждого года. Спрос на многие виды услуг, производство молока, мяса, шерсти, улов рыбы колеблются по сезонам.

Сезонные колебания обычно отрицательно влияют на результаты производственной деятельности, вызывая нарушения ритмичности производства. Поэтому хозяйственные организации принимают меры для смягчения сезонности за счет рационального сочетания отраслей, механизации трудоемких процессов ,создания агропромышленных фирм и т.д.

Комплексное регулирование сезонных изменений по от
дельным отраслям экономики должно основываться на исследовании сезонных колебаний.

В статистике существует ряд методов изучения и измерения сезонных колебаний. Самый простой заключается в построении специальных показателей, которые называются индексами сезонности Is. Совокупность этих показателей отражает сезонную волну. Индексами сезонности являются процентные отношения фактических (эмпирических) внутригрупповых уровней к теоретическим (расчетным) уровням, выступающих, в качестве базы сравнения.

Для того чтобы выявить устойчивую сезонную волну, на которой не отражались бы случайные условия одного года, индексы сезонности вычисляют по данным за несколько лог (не менее трех), распределенным по месяцам.

Если ряд динамики не содержит ярко выраженной тенденции в развитии, то индексы сезонности вычисляются непосредственно по эмпирическим данным без их предварительного выравнивания.

Для каждого месяца рассчитывается средняя величина уровня, например за три года (уt), затем вычисляется среднемесячный уровень для всего ряда у. После чего определяется показатель сезонной волны — индекс сезонности Is как процентное отношение средних для каждого месяца к общему среднемесячному уровню ряда, %:

yi

Is = y * 100

где yt - средняя для каждого месяца минимум за три года;

y - среднемесячный уровень для всего ряда.

Для наглядного примера можно привести аналитическую часть курсовой работы, задание 4

8 Экстраполяция в рядах динамики и прогнозирование

Необходимым условием регулирования рыночных отношений является составление надежных прогнозов развития социально-экономических явлений.

Выявление и характеристика трендов и моделей взаимосвязи создают базу для прогнозирования, т.е. для определения ориентировочных размеров явлений в будущем. Для этого используют метод экстраполяции.

Под экстраполяцией понимают нахождение уровней за пределами изучаемого ряда, т.е. продление в будущее тенденции, наблюдавшейся в прошлом (перспективная экстраполяция). Поскольку в действительности тенденция развития не остается неизменной, то данные, получаемые путем экстраполяции ряда, следует рассматривать как вероятностные оценки.

Экстраполяцию рядов динамики осуществляют различными способами, например, экстраполируют ряды динамики выравниванием по аналитическим формулам. Зная уравнение для теоретических уровней и подставляя в него значения t за пределами исследованного ряда, рассчитывают для t вероятностные ŷt.

На практике результат экстраполяции прогнозируемых явлений обычно получают не точечными (дискретными), а интервальными оценками.

Для определения границ интервалов используют формулу:

ŷt+ tαSŷt

где tα— коэффициент доверия по распределению Стьюдента;

Sŷt = √ Σ(yi-ŷt)²/(n-m)

остаточное среднее квадратическое отклонение от тренда, скорректированное по числу-степеней свободы* (n-m ); n — число уровней ряда дина­мики; т — число параметров адекватной модели тренда (для уравнения прямой m = 2).

Вероятностные границы интервала прогнозируемого явления:

( ŷt­tαSŷt ) ≤ yпр ≤ ( ŷt+tαSŷt )

Нужно иметь в виду, что экстраполяция в рядах динамики носит не только приближённый, но и условный характер.

Поэтому её следует рассматривать как предварительный этап в разработке прогнозов. Для составления прогноза должна быть привлечена дополнительная информация, не содержащаяся в самом динамическом ряду.

2. Практическая часть

Задание 1

По исходным данным таблицы 1:

1. Постройте статистический ряд распределения организаций по признаку среднесписочная численность работников, образовав пять групп с равными интервалами.

2. Постройте графики полученного ряда распределения. Графически определите значения моды и медианы.

3. Рассчитайте характеристики ряда распределения: среднюю арифметическую, среднее квадратическое отклонение, коэффициент вариации.

4. Вычислите среднюю арифметическую по исходным данным (таблица 1), сравните его с аналогичным показателем, рассчитанным в п. 3 настоящего задания. Объяснить причину их расхождения.

Сделать выводы по результатам выполнения задания.

Задание 2

По исходным данным таблицы 1:

1. Установите наличие и характер связи между признаками среднегодовая стоимость основных производственных фондов и среднесписочная численность работников, образовав пять групп с равными интервалами по обоим признакам, методами:

- аналитической группировки;

- корреляционной таблицы.

2. Измерите тесноту корреляционной связи между названными признаками с использованием коэффициента детерминации и эмпирического корреляционного отношения. Сделайте выводы.


Таблица 1

№ п/п Среднеспис. численность чел.(У) Стоимость ОПФ млн.руб.(Х)
1 162 34,714
2 156 24,375
3 179 41,554
4 194 50,212
5 165 38,347
6 158 27,408
7 220 60,923
8 190 47,172
9 163 37,957
10 159 30,210
11 167 38,562
12 205 52,500
13 187 45,674
14 161 34,388
15 120 16,000
16 162 34,845
17 188 46,428
18 164 38,318
19 192 47,590
20 130 19,362
21 159 31,176
22 162 36,985
23 193 48,414
24 158 28,727
25 168 39,404
26 208 55,250
27 166 38,378
28 207 55,476
29 161 34,522
30 186 44,839

Задание 3

По результатам выполнения задания 1 с вероятностью 0,954 определите:

1. Ошибку выборки средней численности работников и границы, в которых будет находиться средняя численность работников в генеральной совокупности.

2. Ошибку выборки доли организаций со среднесписочной численностью работников 180 чел. и более и границы, в которых будет находиться генеральная доля.

Задание 4

Имеются следующие данные о внутригодовой динамике численности работников организации по кварталам за три года, чел.:

Кварталы 2000 2001 2002
I 150 145 140
II 138 124 112
III 144 130 124
IV 152 150 148

Проведите анализ внутригодовой динамики численности работников организации, для чего:

1. Определите индексы сезонности методом постоянной средней.

2. Изобразите на графике сезонную волну изменения численности работников. Сделайте выводы.

3. Осуществите прогноз численности работников организации на 2003 г. по кварталам на основе рассчитанных индексов сезонности при условии, что среднегодовая численность работников в прогнозируемом году составит 160 человек.

2.1. Исследование структуры совокупности

Для построения ряда распределения необходимо определить признак - среднесписочная численность работников (таблица 2.1.).

Таблица 2.1.: Исходные данные

№ п/п Среднеспис. численность чел.(У)
1 162
2 156
3 179
4 194
5 165
6 158
7 220
8 190
9 163
10 159
11 167
12 205
13 187
14 161
15 120
16 162
17 188
18 164
19 192
20 130
21 159
22 162
23 193
24 158
25 168
26 208
27 166
28 207
29 161
30 186

Таблица 2.2.: Отсортированные данные