Смекни!
smekni.com

Моделирование экономики (стр. 5 из 5)

L – трудовые ресурсы,

ОПФ – ОПФ или основной капитал ,

N – природные ресурсы,

W – предметы труда, возвращенные в производство как часть валового продукта X.

В блоке распределения Px разделяется на W и конечный продукт Y. В блоке распределения Py разделяется на непроизводственное потребление C и инвестиции I. Инвестиции разделяются на амортизационные отчисления A и чистые инвестиции I1.

В блоке V чистые инвестиции I1 превращаются в прирост производственного капитала ΔK.

В модели рассмотрим взаимосвязи: x, y, L, I, I`, C. Предположим, что валовые инвестиции I в том же году полностью используются на прирост ОПФ и амортизацию.

В дискретном варианте эта связь имеет вид:

It=qּΔKt+At, (8.1

где ΔKt= Kt- Kt-1 – прирост капитала в году t, q – коэффициент пропорциональности (параметр модели), At=μּKt – амортизационные отчисления,

μ – коэффициент амортизации,

Kt – производств. капитал в году t.

В непрерывном варианте аналог уравнения (8.1) есть :

I(t)=q dK(t)/dt+μK(t).

Отсюда выведем уравнение движения капитала

,

Вернёмся к дискретному варианту:

xt=Wt+yt;

yt=It+Ct;

ТаккакIt=qΔKt+At, то

xt=Wt+yt=Wt+It+Ct=Wt+qΔKt+At+Ct ;

Если предположить, что промежуточные затраты W являются пропорциональными выпуску валовой продукции XWt = axt , то

xt = axt+qΔKt+μKt-Ct,

или ΔKt=(1/q)[(1-a)xt-μKt-Ct] – дискретная однопродуктовая динамическая модель. Здесь a – коэффициент производственных затрат.

В непрерывном варианте :

K`(t)=(1/q)[(1-a)x(t)-μK(t)-C(t)] – непрерывная однопродуктовая динамическая модель.

2. Предположим, что все валовые инвестиции I направлены на введение в действие новых ОПФ (основной производственный капитал не изнашивается), при этом прирост выпуска продукции

Δxt = xt+1-xt,

пропорциональный инвестициям

It = νΔxt,

ν – коэффициент использования инвестиций,

тогда

Wt =axt,

a – коэффициент производственных затрат.

xt=Wt+yt,

yt=It+Ct ;

xt=axt+νΔxt+Ct;

В непрерывном варианте эта модель имеет вид

x(t)=ax(t)+ν dx(t)/dt+C(t).


3. Рассмотренные динамические модели односекторной экономики могут быть использованы для разных целей. С одной стороны на их основе можно создавать более сложные, но и более реальные многосекторные модели. С другой стороны их можно использовать для поиска путей наилучшего развития экономики. Это приводит к задачам оптимального управления.

Из непрерывной однопродуктовой динамической модели

K`(t)=(1/q)[(1-a)x(t)-μK(t)-C(t)],

можно записать:

x(t)=ax(t)+qK`(t)+μK(t)+C(t).

Наилучшим путем развития экономики на отрезке времени [t0, t1], t1<t0 может быть тот, что максимизирует дисконтированное суммарное потребление

,

где C(t) – непроизводственное потребление,

D(t) – функция дисконтирования, которая изображает меру предпочтений потребления продукции в данный момент времени t, по сравнению с другим моментом времени.

Выпуск продукции x(t) ограничивается производственными возможностями, которые определяются моментом времени t , капиталом K(t), трудовыми ресурсами L(t) и задаются функцией


X = F( t, K(t), L(t) ),

которая является производственной функцией. Для всех t используется неравенство

0≤x(t) ≤F( t, K(t), L(t) ),

Изменение капитала ограничено снизу

K(t) ≥ Kmin, t0 ≤ t ≤ t1 .

Кроме этого считается, что в начальный момент времени известен выпуск

x(t0)=x0.