Смекни!
smekni.com

Математические методы планирования экспериментов (стр. 3 из 4)

. (13)

В силу ортогональности матрицы планирования ее коэффициенты равны:

(14)

Уравнения регрессии

определяются независимо один от другого по формулам.

Здесь i - номер столбца в матрице планирования; j - номер строки; суммы в знаменателях различны для линейных, квадратичных эффектов и взаимодействий.

Дисперсии коэффициентов уравнения регрессии следующие:


. (15)

Следует особо отметить, что коэффициенты уравнения регрессии, получаемые с помощью ортогональных планов второго порядка, определяются с разной точностью (см. уравнение (14)), в то время как ортогональные планы первого порядка обеспечивают одинаковую точность коэффициентов, т.е. план, представленный в таблице 3, являющийся ортогональным и обеспечивающий независимость определения коэффициентов b, не является рототабельным.

В результате расчетов по матрице с преобразованными столбцами для квадратичных эффектов получаем уравнение регрессии в виде:

(16)

Для преобразования к обычной форме записи следует перейти от коэффициента

к коэффициенту
, используя выражение:

. (17)

При этом дисперсия этого коэффициента рассчитывается по следующему соотношению:

(18)

В дальнейшем, зная дисперсию воспроизводимости, проверяют значимость коэффициентов и адекватность уравнения:

(19)

Значимость коэффициентов проверяется по критерию согласия Стьюдента

. Коэффициент значим, если
, где m– число степеней свободы дисперсии воспроизводимости.

Адекватность уравнения проверяется по критерию Фишера

Уравнение значимо, если составлено таким образом F - отношение меньше теоретического:

, где
- число свободы дисперсии адекватности;
- число степеней свободы дисперсии воспроизводимости; I - число коэффициентов в уравнении регрессии второго порядка, равное числу сочетаний из
по 2, т.е.

(20)

2.3 Рототабельные планы второго порядка

Как было установлено, план второго порядка, представленный в таблице 3, не обладает свойством рототабельности. Рототабельным называют планирование, для которого дисперсия отклика (выходного параметра)

, предсказанного уравнением регрессии, постоянна для всех точек, находящихся на равном расстоянии от центра эксперимента. Экспериментатору заранее неизвестно, где находится та часть поверхности отклика, которая представляет для него особый интерес, поэтому следует стремиться к тому, чтобы количество информации, содержащееся в уравнении регрессии, было одинаково для всех равноотстоящих от центра эксперимента точек. Действительно, удаление от центра точек 5,6,7,8 в
раза меньше, чем удаление точек 1: 2, 3, 4 (см. рисунок 3,: а), и, следовательно, коэффициент уравнения регрессии определяются с различной дисперсией. Бокс и Хантер предложили рототабельные планы 2-го порядка. Для того чтобы композиционный план был рототабельным, величину звездного плеча
выбирают из условия:

(21)

Или в общем случае

,

где k – число факторов;

p – дробность реплики (для ПФЭ p = 0, для полуреплики p =1, для четвертьреплики p = 2 и т.д.).

Число точек в центре плана

увеличивают. В таблице 4 приведены значения а для различного числа независимых факторов.

Таблица 4 - Значения звездных плеч и числа точек в центре ротатабельных планов

Параметр плана Значение параметров при числе независимых факторов
2
3
4
5 6 6 6 7 7
Ядро плана
Звездное плечо 1,414 1,682 2,00 2,378 2,00 2,828 2,378 3,333 2,828
Число точек в центре плана
5 6 7 10 6 15 9 21 14

Рассмотрим идею выбора значения звездного плеча

на примере матрицы рототабельного планирования второго порядка для
, представленной в таблице 5.

Размещение точек этого плана показано на рисунке 3, б. Для обеспечения рототабельности точек 5, 6, 7, 8 необходимо удалить их от центра плана на расстояние

в
раз большее, чем удаление точек 1, 2, 3, 4 от осей
и
. В результате этого все точки плана (таблица 5) оказываются лежащими на окружности. Учитывая существенно большее влияние на функцию отклика случайной ошибки в точке 9, рекомендуется ставить в этой точке плана не один, а несколько дублирующих опытов (в данном случае опыты с 9 до 13) для усреднения полученных результатов и для осуществления статистического анализа результатов всего эксперимента в целом.

Таблица 5 – Рототабельный план второго порядка

Номер опыта Факторы Результат
Ядроплана 1 +1 -1 -1 +1 +1/3 +1/3
2 +1 +1 -1 -1 +1/3 +1/3
3 +1 -1 +1 -1 +1/3 +1/3
4 + +1 +1 +1 +1/3 +1/3
Звездные точки 5 +1 +1,414 0 0 2 0
6 +1 -1,414 0 0 2 0
7 +1 0 +1,414 0 0 2
8 +1 0 -1,414 0 0 2
Центр плана 9 +1 0 0 0 0 0
10 +1 0 0 0 0 0
11 +1 0 0 0 0 0
13 +1 0 0 0 0 0

Учитывая специфический характер рототабельного плана в общем виде, можно также получить формулы для расчета коэффициентов уравнения регрессии и их дисперсий: