Смекни!
smekni.com

Выполнение корреляционного и регрессионного анализа (стр. 2 из 2)

Соответственно величина 1 - rxy2 характеризует долю дисперсии переменной y, вызванную влиянием всех остальных, неучтенных в эконометрической модели объясняющих переменных.

Таким образом, доля всех неучтенных в полученной эконометрической модели объясняющих переменных приблизительно составляет: 1 - 0, 206 = 0,794 или 79,4%. Степень связи объясняющей переменной x с зависимой переменной y определяется при помощи коэффициента эластичности, который для модели парной линейной регрессии определяется в виде:

.

Тогда

Следовательно, при изменении величины расходов на грузоперевозки на 1% их объем изменяется на 0,49%.

2.3. Оценить качество уравнения с помощью средней ошибки аппроксимации.

Средняя ошибка аппроксимации оценивается по зависимости:

Для этого исходную таблицу дополняем двумя колонками, в которых определяем значения

, рассчитанные с использованием зависимости и значения разности
.
Перевезено грузов, тыс. тонн Расходы, млн, руб
Владимирская 594,6 258,3 926,869 0,559
Брянская 3178,9 656,5 1626,656 0,488
Белгородская 523,8 824,4 1921,720 2,669
Воронежская 2572,3 220,1 859,737 0,666
Ивановская 308,5 73,8 602,633 0,953
Костромская 580,5 82,7 618,274 0,065
Рязанская 203,7 65,4 587,871 1,886
Смоленская 389,3 86,6 625,128 0,606
Тульская 225,8 36,5 537,083 1,379
Ярославская 693,4 279,9 964,828 0,391
сумма = 9,662

Средняя ошибка аппроксимации составляет:

Практически полагают, что значение средней ошибки аппроксимации не должно превышать 12-15% для грубого приближения регрессии к реальной зависимости. В нашем случае ошибка чрезмерна велика.

Воспользуемся результатами исследования, проведенного в п.1, т. е исключим из рассматриваемой выборки данные по Брянской и Белгородской областям.

В этом случае уравнение парной регрессии примет вид:

.

Доля неучтенных в полученной эконометрической модели объясняющих переменных составит: 1 - 0,260 = 0,74 или 74%.

Коэффициент эластичности составит:

,

а средняя ошибка аппроксимации:

Исключение точек выброса из рассматриваемой выборки снизило ошибку аппроксимации, однако её значение превышает допустимое значение.

2.4. Оценить статистическую надежность результатов регрессионного моделирования с помощью критерия Стъюдента и F-критерия Фишера.

Проведем более строгую оценку статистической надежности моделирования с помощью F-критерия Фишера.

Для этого проверим нулевую гипотезу H0 о статистической незначимости полученного уравнения регрессии по условию: если при заданном уровне значимости α = 0,05 теоретическое (расчетное) значение F-критерия (F) больше его критического значения (FКРИТ), то нулевая гипотеза отвергается и полученное уравнение регрессии принимается значимым.

Расчетное значение F, определенное с помощью инструмента Регрессия MS Excel, составило F= 2,078.

Критическое значение FКРИТ определим при помощи статистической функции FРАСПОБР. Входными параметрами функции является уровень значимости (вероятность) и число степеней свободы 1 и 2. Для модели парной регрессии число степеней свободы соответственно равно 1 (одна объясняющая переменная) и n - 2 = 10 - 2 = 8.

FКРИТ = 5,318.

Расчетное значение F= 2,078 меньше критического FКРИТ = 5,318, поэтому нулевая гипотеза H0 о статистической незначимости уравнения регрессии

принимается, что подтверждает вывод, сделанный в п.2.3.

При расчете критериев Фишера для сокращенной выборки (исключая данные по Брянской и Белгородской областям) получаем аналогичный результат.

F= 2,115< FКРИТ = 5,987.

2.5. Сделать итоговые выводы.

1. Уравнение парной линейной регрессии, связывающее объемы перевозимых грузовыми автомобилями крупных и средних организаций автомобильного транспорта в 2006 году, y с величиной расходов на перевозку x, имеет вид:

При этом доля всех неучтенных в полученной эконометрической модели объясняющих переменных приблизительно составляет 79,4%, т.е. учтенными остаются лишь 20,6 % параметров.

Величина коэффициента эластичности говорит о том, что при изменении величины расходов на грузоперевозки на 1% их объем должен измениться на 0,49%.

Расчет средней ошибки аппроксимации (А = 96,62 %), а также анализ при помощи критерия Фишера показал, что полученное уравнение регрессии не соответствует реальной зависимости (в силу большой доли неучтенных в зависимости параметров).

2. Уравнение парной линейной регрессии для выборки исходных данных, исключающей данные по Брянской и Белгородской областям, которые по результатам выполнения задания 1 признаны точками выброса, имеет вид:

При этом доля всех неучтенных в полученной эконометрической модели объясняющих переменных приблизительно составляет 74%.

Величина коэффициента эластичности говорит о том, что при изменении величины расходов на грузоперевозки на 1% их объем должен измениться на 0,81%.

Расчет средней ошибки аппроксимации (А = 56,25 %), а также анализ при помощи критерия Фишера показал, что полученное уравнение регрессии также не соответствует реальной зависимости (в силу большой доли неучтенных в зависимости параметров).

Результаты регрессионного моделирования не надежны.