Соответственно величина 1 - rxy2 характеризует долю дисперсии переменной y, вызванную влиянием всех остальных, неучтенных в эконометрической модели объясняющих переменных.
Таким образом, доля всех неучтенных в полученной эконометрической модели объясняющих переменных приблизительно составляет: 1 - 0, 206 = 0,794 или 79,4%. Степень связи объясняющей переменной x с зависимой переменной y определяется при помощи коэффициента эластичности, который для модели парной линейной регрессии определяется в виде:
.Тогда
Следовательно, при изменении величины расходов на грузоперевозки на 1% их объем изменяется на 0,49%.
2.3. Оценить качество уравнения с помощью средней ошибки аппроксимации.
Средняя ошибка аппроксимации оценивается по зависимости:
Для этого исходную таблицу дополняем двумя колонками, в которых определяем значения
, рассчитанные с использованием зависимости и значения разности .Перевезено грузов, тыс. тонн | Расходы, млн, руб | |||
Владимирская | 594,6 | 258,3 | 926,869 | 0,559 |
Брянская | 3178,9 | 656,5 | 1626,656 | 0,488 |
Белгородская | 523,8 | 824,4 | 1921,720 | 2,669 |
Воронежская | 2572,3 | 220,1 | 859,737 | 0,666 |
Ивановская | 308,5 | 73,8 | 602,633 | 0,953 |
Костромская | 580,5 | 82,7 | 618,274 | 0,065 |
Рязанская | 203,7 | 65,4 | 587,871 | 1,886 |
Смоленская | 389,3 | 86,6 | 625,128 | 0,606 |
Тульская | 225,8 | 36,5 | 537,083 | 1,379 |
Ярославская | 693,4 | 279,9 | 964,828 | 0,391 |
сумма = 9,662 |
Средняя ошибка аппроксимации составляет:
Практически полагают, что значение средней ошибки аппроксимации не должно превышать 12-15% для грубого приближения регрессии к реальной зависимости. В нашем случае ошибка чрезмерна велика.
Воспользуемся результатами исследования, проведенного в п.1, т. е исключим из рассматриваемой выборки данные по Брянской и Белгородской областям.
В этом случае уравнение парной регрессии примет вид:
.Доля неучтенных в полученной эконометрической модели объясняющих переменных составит: 1 - 0,260 = 0,74 или 74%.
Коэффициент эластичности составит:
,а средняя ошибка аппроксимации:
Исключение точек выброса из рассматриваемой выборки снизило ошибку аппроксимации, однако её значение превышает допустимое значение.
2.4. Оценить статистическую надежность результатов регрессионного моделирования с помощью критерия Стъюдента и F-критерия Фишера.
Проведем более строгую оценку статистической надежности моделирования с помощью F-критерия Фишера.
Для этого проверим нулевую гипотезу H0 о статистической незначимости полученного уравнения регрессии по условию: если при заданном уровне значимости α = 0,05 теоретическое (расчетное) значение F-критерия (F) больше его критического значения (FКРИТ), то нулевая гипотеза отвергается и полученное уравнение регрессии принимается значимым.
Расчетное значение F, определенное с помощью инструмента Регрессия MS Excel, составило F= 2,078.
Критическое значение FКРИТ определим при помощи статистической функции FРАСПОБР. Входными параметрами функции является уровень значимости (вероятность) и число степеней свободы 1 и 2. Для модели парной регрессии число степеней свободы соответственно равно 1 (одна объясняющая переменная) и n - 2 = 10 - 2 = 8.
FКРИТ = 5,318.
Расчетное значение F= 2,078 меньше критического FКРИТ = 5,318, поэтому нулевая гипотеза H0 о статистической незначимости уравнения регрессии
принимается, что подтверждает вывод, сделанный в п.2.3.При расчете критериев Фишера для сокращенной выборки (исключая данные по Брянской и Белгородской областям) получаем аналогичный результат.
F= 2,115< FКРИТ = 5,987.
2.5. Сделать итоговые выводы.
1. Уравнение парной линейной регрессии, связывающее объемы перевозимых грузовыми автомобилями крупных и средних организаций автомобильного транспорта в 2006 году, y с величиной расходов на перевозку x, имеет вид:
При этом доля всех неучтенных в полученной эконометрической модели объясняющих переменных приблизительно составляет 79,4%, т.е. учтенными остаются лишь 20,6 % параметров.
Величина коэффициента эластичности говорит о том, что при изменении величины расходов на грузоперевозки на 1% их объем должен измениться на 0,49%.
Расчет средней ошибки аппроксимации (А = 96,62 %), а также анализ при помощи критерия Фишера показал, что полученное уравнение регрессии не соответствует реальной зависимости (в силу большой доли неучтенных в зависимости параметров).
2. Уравнение парной линейной регрессии для выборки исходных данных, исключающей данные по Брянской и Белгородской областям, которые по результатам выполнения задания 1 признаны точками выброса, имеет вид:
При этом доля всех неучтенных в полученной эконометрической модели объясняющих переменных приблизительно составляет 74%.
Величина коэффициента эластичности говорит о том, что при изменении величины расходов на грузоперевозки на 1% их объем должен измениться на 0,81%.
Расчет средней ошибки аппроксимации (А = 56,25 %), а также анализ при помощи критерия Фишера показал, что полученное уравнение регрессии также не соответствует реальной зависимости (в силу большой доли неучтенных в зависимости параметров).
Результаты регрессионного моделирования не надежны.