Смекни!
smekni.com

Особенности эконометрического метода (стр. 7 из 8)

Система одновременных уравнений обычно содержит эндогенные и экзогенные элементы. Эндогенные переменные обозначены в приведенной ранее системе как у. это зависимые переменные, число которых равно числу уравнений в системе. Экзогенные переменные обозначаются обычно х. это предопределенные переменные, влияющие на зависящие от них. Простейшая структурная форма модели имеет вид:

(1)

классификация переменных на экзо- и эндогенные зависит от теоретической концепции данной модели. Экономические переменные в одних моделях могут выступать как эндогенные переменные, а в др. как экзогенные. Внешнеэкономические переменные (климатические условия) выступают только в качестве экзогенных. Кроме того, в качестве экзогенных переменных могут выступать значения эндогенных переменных за предшествующий период времени. Такие переменные называются лаговыми. Структурная форма модели в правой части содержит коэффициенты при эндогенных переменных aj и bj, которые называются структурными коэффициентами модели. Использование МНК для оценивания структурных коэффициентов дает смещение и несостоятельные оценки, поэтому обычно для определении структуры коэффициентов структурная форма модели преобразуется в приведенную. Приведенная форма модели представляет собой систему линейных функций эндогенных переменных от экзогенных. Приведенная форма модели имеет вид:

По своему виду эта система ничем не отличается от системы независимых уравнений, параметры которой находятся с помощью МНК, поэтому применяя МНК можно найти коэффициент ۟δi, а затем через них оценить значения экзогенных и эндогенных переменных. Коэффициент приведенной формы модели представляет собой функций коэффициентов структурной модели. Рассмотрим это на примере. Для структурной формы модели (1) приведенная форма модели имеет вид:

Выразим у2 из второго уравнения первой системы:

Чтобы найти δ21 и δ22 нужно выразить у1 из второго уравнения первой системы и прировнять к правой части первого уравнения первой системы.


29. проблема идентификации

При приведенной формы модели к структурной исследователь сталкивается с проблемой идентификации. Идентификация – единственность соответствия между приведенной структурной формами модели. С позиции идентифицируемости структурные модели можно подразделить: идентифицируемые, неидентифицируемые, сверхидентифицируемые.

1) если все ее структурные коэффициенты определяются однозначно, т.е. единственным образом по коэффициентам приведенной формы. Это означает, число параметров структурной модели равно числу параметров приведенной формы модели. В этом случае, структурные коэффициенты можно оценить через параметры приведенной формы.

2) Если число приведенных коэффициентов меньше числа структурных коэффициентов, которые могут быть оценены через коэффициенты приведенной формы. Структурная форма модели в полном виде и эндогенными переменными и экзогенными всегда неидентифицируема.

3) Если число приведенных коэффициентов больше числа структурных коэффициентов. В этом случае, на основе приведенных коэффициентов можно получить 2 и более значения структурных коэффициентов. В такой модели число структурных коэффициентов меньше числа приведенных коэффициентов.

28. Сверхидентифицируемая модель в отличии от неидентифицируемой практически решаема, но для этого требуются специальные методы. Модель считается идентифицируема, если каждое уравнение системы идентифицируется.. если хотя бы одно из уравнений системы не идентифицируется, то модель считается неидентифицируемой. Сврерхидентифицируемая модель содержит хотя бы одно сверхидентифицируемое уравнение. Если обозначить число эндогенных уравнений в j уравнении через н, а число экзогенных тип содержаться в системе, но не входят в данное уравнение через Д, то условие идентифицируемости можно записать в сл. Виде: Д+1=н - идент,Д+1<н- неидент, Д+1>н – сврерхидент. для определения структурной модели система должна быть идентифицируема или Сверхидентифицируемая.

30. Специфика статистической оценки взаимосвязи 2 временных рядов

В предыдущей главе было показано, что временной ряд содержит 3 основных компоненты: тенденцию, циклические и сезонные колебания и случайные компоненты. Наличие этих компонент сказывается на результатах корреляционно-регрессионного анализа временных рядов данных. Предварительный этап такого анализа заключается в выявлении структуры изучаемых временных рядов. Если на этом этапе выявлено, что временные ряды содержат циклические или сезонные колебания, то перед проведением дальнейшего исследования необходимо устранить сезонную или циклическую составляющую из уровня ряда. Это устранение можно проводить в соответствии с методикой построения аддитивной или мультипликативной модели. Пусть изучается зависимость между временными рядами Х и У. для количественной характеристики такой зависимости используются линейные коэффициенты корреляции. Для того, чтобы получить коэффициенты корреляции нужно избавиться от «ложной корреляции». Она означает, наличие тенденции в каждом ряде. Обычно это осуществляется с помощью метода исключения тенденции. Наличие тенденции в каждом временном ряде означает, что на зависимую переменную Yt и независимую переменную Xt оказывает влияние фактор времени, который в модели непосредственно неучтен. Yt=a+bXt+Et. фактор времени учитывается в корреляционной зависимости между значениями остатка Et за текущий момент времени. Такое влияние получило название «автокорреляцией в остатках» - нарушение одной из основных предпосылок МНК, в которой говорится о случайности остатков, полученных по уравнению регрессии. Возможный путь решения проблемы - применение обобщенного метода МНК.

31. методы исключения тенденции

Сущность всех таких методов заключается Вт том, что устранить или зафиксировать воздействие фактора времени на формирование уровня ряда. Основные методы исключения тенденции можно разделить на 2 группы:

1 группа. Методы, основанные на преобразовании исходных уровней ряда в новые переменные, не содержащие тенденции. Полученные переменные используются дальше для анализа взаимосвязи изучаемых временных рядов. Такие методы предполагают непосредственное устранение трендовой компоненты из каждого уровня временного ряда. В этой группе 2 основных метода: - метод последовательных разностей; - метод отклонений от тренда.

2 группа. Методы, основанные на изучении взаимосвязи исходных уровней временных рядов при устранении воздействия фактора времени на зависящую и независимую переменные модели. К таким методам относятся – метод включения в модель регрессии фактора времени.

Метод отклонений от тренда. Пусть имеется 2 временных ряда Хt и Yt. Каждый из которых содержит трендовую переменную t и случайную компоненту Е. после проведения аналитического выравнивания можно найти параметры соответствующих уравнений тренда и определить расчетные по тренду значения

и
, соответствующие исходным временным рядам. Эти значения можно принять за оценку трендовой компоненты t каждого ряда, тогда влияние тенденции можно устранить путем вычитания расчетных значений из фактических уровней ряда. Эту процедуру преодолевают для каждого временного ряда, а разностей Xt-
иYt-
при условии, что эти отклонения не содержит тенденции.

Метод последовательных разностей. В ряде случаев вместо аналитического выравнивания для устранения тенденции используется простой метод – метод последовательных разностей. Если временной ряд содержит ярко выраженную линейную тенденцию, то ее можно устранить путем замены исходных уровней ряда с цепными абсолютными приростами (первыми разностями). Пусть временной ряд Yt содержит тренд

и случайную компоненту Еt.
=a+bt. Тогда первая разность

Коэффициент b – компонента, не зависящая от времени при наличии сильной тенденции остатки Et и E(t-1) малы и в соответствии с предпосылками МНК носят случайный характер, поэтому первые разности ∆t не зависят от переменной времени и их можно использовать для дальнейшего анализа. Если временной ряд содержит тенденцию в форме параболы, то для ее устранения используются разности второго порядка, которые считаются через разности первого порядка

=a+bt+сt2.
. Если временной ряд содержит экспоненциальный или степенной тренд, то метод последовательный разностей не применим не к исходным уровням ряда, а к их логарифмам. Методы разностей при своей простоте имеет 2 недостатка: - его изменение связано с сокращением числа пар наблюдений по которым строится уравнение регрессии. Это ведет к потере числа степеней свободы. – использованием вместо исходных уровней их прироста приводит к потере информации, содержащейся в исходных данных.