1. графический. 2. аналитический, т.е. исходя из теории изучаемой связи. 3. экспериментальный
при изучении взаимосвязи между 2 переменными графический способ подбора вида уравнений основан на поликорреляции ( исходные данные, обозначенные на плоскости ХОУ).
Основные типы кривых, используемые при количественной оценке связи между 2 переменными.
Аналитический способ типа уравнений основан на изучении материальной природы связи исследуемых признаков.
Например, потребность предприятия в электроэнергии у зависит от объема выполняемой продукции х и всю потребленную энергию можно разделить на 2 части:
1. несвязанную напрямую с производством продукции (а)
2. связанную непосредственно с объемом выпускаемой продукции, которая возрастает пропорционально увеличению объема выпуска (b).
Связь можно изобразить в виде: у=а+bx. При использовании компьютеров для обработки информации выбор вида уравнения осуществляется экспериментальным способом, т.е. путем сравнения величины остаточной дисперсии Дост, которая вычисляется по формуле:
Практически исследование имеет место некоторая рассеянная точка относительно линии регрессии. Это рассеяние обусловлено влиянием изученных моделей факторов. При экспериментальном способе перебираются разные математические функции в автоматическом режиме и из них выбирается та функция, у которой Дост минимально. Если же Д ост оказывается примерно одинаковой для нескольких функций, то предпочтение отдается более простым функциям.
5. линейная регрессия и корреляция: смысл и оценка параметров
Линейная регрессия сводится к нахождению уравнения вида:
Уравнение вида (1) позволяет по заданным значениям фактора Х найти теоретическое значение результативного признака, представляя в уравнение фактическое значение фактора Х. построение линейной регрессии сводится к оценке этих параметров основан на методе наименьших квадратов (МНК) – позволяет получить также оценки параметров а и b при которых сумма квадратов отклонений теоретических значений результативного признака от фактического значения минимальна, т.е
Это означает, что из всех линий регрессии на графике выбирается так, чтобы сумма квадратов между точками и этой линией по вертикали была минимальна.
Чтобы найти минимум функции нужно вычислить частные производные по каждому из неизвестных параметров a и b и приравнять их к нулю.
Решение системы будут следующие уравнения.
Параметр b называется коэффициентом регрессии если а больше 0, то относительное изменение результата У происходит медленнее чем изменение фактора Х. если а меньше нуля, то происходит опережение изменения результата под изменением фактора.
Уравнение регрессии всегда дополняется коэффициентом или показателем тесноты связи.
При использовании линейной регрессии в качестве показателя тесноты связи используется коэффициент корреляции, который обозначается:
Величина коэффициента корреляции находится в пределах единицы
Если b>0 то коэффициент корреляции [-1;0]. Величина линейного коэффициента корреляции оценивает тесноту связи признака Х и У в линейной форме. Но это не означает ,что если коэффициент корреляции равен 0, то между Х и У связи нет. Это означает, что нужно пользоваться др. спецификацией. Для оценки качества подбора линейной функции рассчитывается квадрат линейной корреляции.
6. оценка существования параметров линейной регрессии и корреляции
после того, как найдено уравнение регрессии проводится оценка значимости его параметров, а также уравнения в целом. Оценка значимости уравнений проводится с помощью F критерия Фишера. Для этого выдвигается гипотеза Но, которая говорит, что b=0, что при Х не оказывае6т влияние на У. непосредственно расчету критерия предшествует анализ дисперсии. Центральное место в этом анализе занимает разложение общей суммы квадратов на 2 составляющие: объясненную и необъясненную.
первая сумма- общая сумма квадратов отклонений результативного признака от среднего уровня. Вторая сумма – сумма квадратов отклонений, объясненная регрессией (факторная).третья сумма- остаточная сумма отклонений, необъясненная часть.
Если фактор Х не оказывает влияния на результат У, то линия регрессии на графике параллельна ОХ и
Сопоставляя факторную и остаточную дисперсии в расчете на одну степень свободы получаем величину F критерия
После нахождения величины F для определения верности гипотезы Но она сравнивается с табличным значением F-критерия. Fтабличное зависит от соотв. Степени свободы и уровня значимости. Fтабл больше F фактической, то гипотеза Но не может быть отвергнута, т.к. есть риск неправильного вывода о наличии связи. В этом случае уравнение считается статистически незначимым, если выполняется обратное неравенство, то гипотеза Но – отвергается и уравнение считается статистически значимым и надежным. Кроме выяснения значимости уравнения в линейной регрессии оценивается так4же значимость параметров. С этой целью по каждому из параметров вычисляется стандартная ошибка.
S- остаточная сумма квадратов на одну степень свободы или остаточная дисперсия. Величина стандартной ошибки совместна с t- распределением Стьюдента, поэтому для оценки существенности параметра b его величина сравнивается со стандартной ошибкой и вычисляется значение
процедура оценивания существенности параметра ф аналогично процедуре оценивания параметра b. Значимость линейного коэффициента корреляции проверяется на основе величины ошибки коэффициента корреляции.
7. интервалы прогнозов по линейному уравнению регрессии
В прогнозах расчета по уравнению регрессии определяется предсказываемое значение Ур при подстановке в уравнение регрессии соотв. Значений Хр=Хк. При подстановке Хр получаем точечный прогноз, который явно нереален. Поэтому он дополняется интервальным прогнозом У*.